Please wait a minute...
金属学报  2022, Vol. 58 Issue (8): 965-978    DOI: 10.11900/0412.1961.2021.00438
  综述 本期目录 | 过刊浏览 |
TiAl合金板材轧制研究现状
陈玉勇1,2(), 叶园1, 孙剑飞1
1.哈尔滨工业大学 材料科学与工程学院 哈尔滨 150001
2.攀枝花学院 国际钒钛研究院 攀枝花 617000
Present Status for Rolling TiAl Alloy Sheet
CHEN Yuyong1,2(), YE Yuan1, SUN Jianfei1
1.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2.International Institute of Vanadium and Titanium, Panzhihua University, Panzhihua 617000, China
引用本文:

陈玉勇, 叶园, 孙剑飞. TiAl合金板材轧制研究现状[J]. 金属学报, 2022, 58(8): 965-978.
Yuyong CHEN, Yuan YE, Jianfei SUN. Present Status for Rolling TiAl Alloy Sheet[J]. Acta Metall Sin, 2022, 58(8): 965-978.

全文: PDF(4766 KB)   HTML
摘要: 

在航空航天和汽车工业领域,轻质高强耐高温的TiAl合金板材是重要的战略结构材料。然而,TiAl合金板材成形难度大,尤其是大尺寸高性能TiAl合金轧板的制备更是困难。本文从TiAl合金轧板制备方法研究现状出发,综述了近年来铸锭冶金轧制、粉末冶金轧制、铸锭直接热轧和叠轧法制备TiAl合金板材的工艺、尺寸、组织和力学性能,论述了上述制备方法的特点及存在的不足,提出了关于制备大尺寸高性能TiAl合金轧板的建议以及未来发展方向。

关键词 TiAl合金板材轧制工艺力学性能板材尺寸    
Abstract

TiAl alloy sheets are important strategic structural materials in aerospace and automotive industry because of their high strength-to-weight ratio and high service temperature. However, the preparation of TiAl alloy sheets is difficult, especially the rolling of large-size high-performance TiAl alloy sheets. The preparation process, size, microstructure, and mechanical properties of hot-rolling TiAl alloy sheets using ingot metallurgy, powder metallurgy, direct rolling, and roll bonding approaches in recent years were reviewed. The features and existing problems of the above processing routes were discussed. Meanwhile, some suggestions on rolling large-size TiAl alloy sheets and its future development were proposed.

Key wordsTiAl alloy sheet    rolling process    mechanical property    sheet size
收稿日期: 2021-10-15     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(51434007);国家自然科学基金项目(51371064)
作者简介: 陈玉勇,男,1956年生,教授,博士
图1  TiAl合金蜂窝芯和夹芯板[3]
图2  铸锭冶金轧制加工路线
图3  近等温轧制和非等温轧制TiAl合金板材宏观形貌及显微组织[18]
图4  铸锭冶金轧制TiAl合金板材宏观形貌[19,21,22,24]
图5  Ti-44Al-8Nb-0.2W-0.2B-Y合金板材及轧制Ti-45Al-8.5Nb-(W, B, Y)合金显微组织[19,24]
图6  Ti-44Al-5V-1Cr合金板材显微组织[21]
图7  Ti-43Al-9V-0.2Y合金板材显微组织[23]
图8  粉末冶金轧制加工路线
图9  粉末冶金轧制γ-TiAl合金板材[27]
图10  Ti-45Al-7Nb-0.3W合金板材(变形量73%)显微组织[28]
图11  Ti-45Al-7Nb-0.3W合金板材(变形量50%)显微组织[29]
图12  铸锭直接热轧TiAl合金板材宏观形貌[33~36]
图13  铸锭直接热轧坯料宏观形貌[35]
图14  Ti-44Al-5Nb-1Mo-2V-0.2B合金板材显微组织[36]
CompositionMethodSize / mm3Room temperature800oCInstitution
σ0.2σbδσ0.2σbδ
MPaMPa%MPaMPa%
Ti-44Al-8Nb-0.2W-0.2B-Y[19]IM rolling410 × 70 × 2.196211741.01681777-HIT
Ti-43Al-9V-0.2Y[23]IM rolling875 × 70 × 2.66848261.4-39167.5HIT
Ti-44Al-5V-1Cr[21]IM rolling300 × 200 × 2.7-7252.0---YSU
Ti-45Al-8.5Nb-0.2W-0.2B-IM rolling600 × 75 × 391110531.855674593.6USTB
0.03Y[24]
TLA γ-TiAl[27]PM rolling370 × 220 × 26086682.56---IMR
Ti-45Al-7Nb-0.3W[29]PM rollingThickness 4 mm5826212.04606507.2CSU
Ti-43Al-9V-0.3Y[30]PM rolling-5416503.037136658HIT
Ti-45Al-8.5Nb-(Nb, W, B)[33]Direct-rolling350 × 90 × 3.56466910.55295390.7USTB
Ti-44.45Al-3.80Nb-1.01Mo-Direct-rolling510 × 105 × 1.43485711.7841146016.76USTB
0.29Si-0.14B[34]
Ti-45Al-8.5Nb-0.2W-0.2B-Direct-rolling300 × 80 × 3-8580.265737446.0USTB
0.2Y[35]
Ti-44Al-5Nb-1Mo-2V-0.2B[36]Direct-rolling330 × 115 × 3----55332NEU
表1  国内TiAl合金轧板名义成分、轧制方法、尺寸及力学性能[19,21,23,24,27,29,30,33~36]
图15  叠轧法加工路线
图16  Ti-43Al-9V-0.3Y/Ti-6Al-4V复合板材宏观形貌[40]
图17  Ti-6Al-4V/高Nb-TiAl叠层复合材料轧板显微组织[43]
1 Appel F, Clemens H, Fischer F D. Modeling concepts for intermetallic titanium aluminides [J]. Prog. Mater. Sci., 2016, 81: 55
doi: 10.1016/j.pmatsci.2016.01.001
2 Zhang W J, Reddy B V, Deevi S C. Physical properties of TiAl-base alloys [J]. Scr. Mater., 2001, 45: 645
doi: 10.1016/S1359-6462(01)01075-2
3 Das G, Kestler H, Clemens H, et al. Sheet gamma TiAl: Status and opportunities [J]. JOM, 2004, 56(11): 42
4 Chen Y Y, Kong F T, Cui N. Preparation and microstructural analysis of TiAl alloy sheet [J]. Mater. China, 2015, 34: 379
4 陈玉勇, 孔凡涛, 崔 宁. TiAl合金板材的制备与组织分析 [J]. 中国材料进展, 2015, 34: 379
5 Lin J P, Chen G L. Development of TiAl intermetallic based compound [J]. Mater. China, 2009, 28(1): 31
5 林均品, 陈国良. TiAl基金属间化合物的发展 [J]. 中国材料进展, 2009, 28(1): 31
6 Zhang D M, Chen G Q, Han J C, et al. Research on gamma TiAl-based alloy sheet fabricated by EB-PVD [J]. J. Aeronaut. Mater., 2006, 26(4): 35
6 章德铭, 陈贵清, 韩杰才 等. EB-PVD制备γ-TiAl基合金薄板的研究 [J]. 航空材料学报, 2006, 26(4): 35
7 Liu J P, Su Y Q, Luo L S, et al. Fabrication of wavy γ-TiAl based sheet with foil metallurgy [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 72
doi: 10.1016/S1003-6326(11)61142-4
8 Rivard J D K, Blue C A, Ott R D, et al. Advanced manufacturing technologies utilising high density infrared radiant heating [J]. Surf. Eng., 2004, 20: 220
doi: 10.1179/026708404225015022
9 Chen Y Y, Yue H Y, Wang X P, et al. Selective electron beam melting of TiAl alloy: Microstructure evolution, phase transformation and microhardness [J]. Mater. Charact., 2018, 142: 584
doi: 10.1016/j.matchar.2018.06.027
10 Yue H Y, Chen Y Y, Wang X P, et al. Effect of beam current on microstructure, phase, grain characteristic and mechanical properties of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting [J]. J. Alloys Compd., 2018, 750: 617
doi: 10.1016/j.jallcom.2018.03.343
11 Chen Y Y, Yue H Y, Wang X P. Microstructure, texture and tensile property as a function of scanning speed of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting [J]. Mater. Sci. Eng., 2018, A713: 195
12 Yue H Y, Chen Y Y, Wang X P, et al. Microstructure, texture and tensile properties of Ti-47Al-2Cr-2Nb alloy produced by selective electron beam melting [J]. J. Alloys Compd., 2018, 766: 450
doi: 10.1016/j.jallcom.2018.07.025
13 Tomita M, Noguchi Y. Miti program on high temperature intermetallics [J]. Trans. Nonferrous Met. Soc. China, 1999, 9(): 346
14 Semiatin S L, Seetharaman V. Deformation and microstructure development during hot-pack rolling of a near-gamma titanium aluminide alloy [J]. Metall. Mater. Trans., 1995, 26A: 371
15 Clemens H, Kestler H. Processing and applications of intermetallic γ‐TiAl‐based alloys [J]. Adv. Eng. Mater., 2000, 2: 551
doi: 10.1002/1527-2648(200009)2:9<551::AID-ADEM551>3.0.CO;2-U
16 Zhang G C. TiAl intermetallic sheet isothermal rolling equipment and technology [J]. Titanium Alloy. Inf., 1996, (1): 7
16 张功才. TiAl金属间化合物薄板的等温轧制设备及其工艺 [J]. 钛合金信息, 1996, (1): 7
17 Cui X P. Microstructure and mechanical properties of micro-laminated TiB2-TiAl composite sheets prepared by roll bonding and reaction annealing [D]. Harbin: Harbin Institute of Technology, 2012
17 崔喜平. 轧制及反应退火制备微叠层TiB2-TiAl复合材料板组织与性能 [D]. 哈尔滨: 哈尔滨工业大学, 2012
18 Clemens H, Glatz W, Eberhardt N, et al. Processing, properties and applications of gamma titanium aluminide sheet and foil materials [J]. MRS Online Proc. Lib., 1996, 460: 29
19 Zhou H T, Kong F T, Wang X P, et al. High strength in high Nb containing TiAl alloy sheet with fine duplex microstructure produced by hot pack rolling [J]. J. Alloys Compd., 2017, 695: 3495
doi: 10.1016/j.jallcom.2016.12.005
20 Zhou H T, Kong F T, Wu K, et al. Hot pack rolling nearly lamellar Ti-44Al-8Nb-(W, B, Y) alloy with different rolling reductions: Lamellar colonies evolution and tensile properties [J]. Mater. Des., 2017, 121: 202
doi: 10.1016/j.matdes.2017.02.053
21 Liu H W. Hot working, structure and properties of (γ + α2 + B2) multiphase TiAl alloy [D]. Qinhuangdao: Yanshan University, 2017
21 刘宏武. (γ + α2 + B2)三相TiAl合金热加工特性及组织性能研究 [D]. 秦皇岛: 燕山大学, 2017
22 Zhang Y, Wang X P, Kong F T, et al. A high-performance β-stabilized Ti-43Al-9V-0.2Y alloy sheet with a nano-scaled antiphase domain [J]. Mater. Lett., 2018, 214: 182
doi: 10.1016/j.matlet.2017.12.002
23 Zhang Y, Wang X P, Kong F T, et al. A high-performance β-solidifying TiAl alloy sheet: Multi-type lamellar microstructure and phase transformation [J]. Mater. Charact., 2018, 138: 136
doi: 10.1016/j.matchar.2018.02.005
24 Gao S B, Liang Y F, Ye T, et al. In-situ control of microstructure and mechanical properties during hot rolling of high-Nb TiAl alloy [J]. Materialia, 2018, 1: 229
doi: 10.1016/j.mtla.2018.05.007
25 Liu F X, He Y H, Liu Y, et al. Present status and future prospects for PM TiAl-based alloy sheet [J]. Rare Met. Mater. Eng., 2005, 34: 169
25 刘峰晓, 贺跃辉, 刘 咏 等. 粉末冶金制备TiAl基合金板材的研究现状及趋势 [J]. 稀有金属材料与工程, 2005, 34: 169
26 Yang F, Kong F T, Chen Y Y, et al. Manufacture and present status of TiAl alloy sheet [J]. J. Mater. Eng., 2010, (5): 96
26 杨 非, 孔凡涛, 陈玉勇 等. TiAl合金板材的制备及研究现状 [J]. 材料工程, 2010, (5): 96
27 Xu L, Bai C G, Wang G, et al. Manufacturing of γ-TiAl sheet by hot packed rolling of powder metallurgy preform [J]. Titanium Ind. Prog., 2011, 28(5): 17
27 徐 磊, 柏春光, 王 刚 等. 包覆热轧制备粉末冶金TiAl合金板材及热加工行为研究 [J]. 钛工业进展, 2011, 28(5): 17
28 Liu Y, Liang X P, Liu B, et al. Investigations on processing powder metallurgical high-Nb TiAl alloy sheets [J]. Intermetallics, 2014, 55: 80
doi: 10.1016/j.intermet.2014.07.013
29 Li H Z, Qi Y L, Liang X P, et al. Microstructure and high temperature mechanical properties of powder metallurgical Ti-45Al-7Nb-0.3W alloy sheets [J]. Mater. Des., 2016, 106: 90
doi: 10.1016/j.matdes.2016.05.113
30 Zhang D D. Preparation of powder TiAl alloy sheet and study on microstructure and properties [D]. Harbin: Harbin Institute of Technology, 2020
30 张冬冬. 粉末TiAl合金板材的制备及其组织性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020
31 Matsuo M. Developments in processing technology of gamma titanium aluminides for potential application to airframe structures [J]. ISIJ Int., 1991, 31: 1212
doi: 10.2355/isijinternational.31.1212
32 Hanamura T, Hashimoto K. Improvement of microstructure and mechanical properties in TiB2-doped TiAl alloy by direct sheet casting [J]. Mater. Trans. JIM, 1998, 39: 724
33 Shen Z Z. The Investigation of manufacturing, microstructure, properties of high Nb-TiAl alloy sheet [D]. Beijing: University of Science and Technology Beijing, 2016
33 沈正章. 高Nb-TiAl合金板材制备及组织性能研究 [D]. 北京: 北京科技大学, 2016
34 Zeng S W. Research on hot deformation and oxidation behavior of TiAl containing Nb, Mo [D]. Beijing: University of Science and Technology Beijing, 2016
34 曾尚武. 含铌、钼TiAl合金热变形及氧化行为研究 [D]. 北京: 北京科技大学, 2016
35 Chen L. Study on microstructure optimization and creep properties of TiAl alloy containing β stable element [D]. Beijing: University of Science and Technology Beijing, 2021
35 陈 林. 含β稳定元素TiAl合金组织优化及其蠕变性能研究 [D]. 北京: 北京科技大学, 2021
36 Li T R, Liu G H, Xu M, et al. High temperature deformation and control of homogeneous microstructure during hot pack rolling of Ti-44Al-5Nb-(Mo, V, B) alloys: The impact on mechanical properties [J]. Mater. Sci. Eng., 2019, A751: 1
37 Luo J G, Acoff V L. Processing gamma-based TiAl sheet materials by cyclic cold roll bonding and annealing of elemental titanium and aluminum foils [J]. Mater. Sci. Eng., 2006, A433: 334
38 Zhang R G, Acoff V L. Processing sheet materials by accumulative roll bonding and reaction annealing from Ti/Al/Nb elemental foils [J]. Mater. Sci. Eng., 2007, A463: 67
39 Chaudhari G P, Acoff V L. Titanium aluminide sheets made using roll bonding and reaction annealing [J]. Intermetallics, 2010, 18: 472
doi: 10.1016/j.intermet.2009.09.008
40 Kong F T, Chen Y Y. Preparation of γ-TiAl/TC4 composite sheet and its microstructure and properties [J]. Rare Met. Mater. Eng., 2009, 38: 1484
40 孔凡涛, 陈玉勇. γ-TiAl/TC4复合板材的制备及组织性能研究 [J]. 稀有金属材料与工程, 2009, 38: 1484
41 Bian Z W. Study of process of rolling and heat treatment on multilaminated Ti-B4C/Al sheets [D] Harbin: Harbin Institute of Technology, 2010
41 边卓伟. 多层Ti-(B4C/Al)板轧制和热处理工艺研究 [D]. 哈尔滨: 哈尔滨工业大学, 2010
42 Wang Y. Microstructure and mechanical properties of titanium aluminide composite sheet prepared by roll bonding and reactive annealing [D]. Harbin: Harbin Institute of Technology, 2011
42 王 银. 叠轧及热处理制备钛铝基复合材料板的微观组织与性能 [D]. 哈尔滨: 哈尔滨工业大学, 2011
43 Sun W, Yang F, Kong F T, et al. Interface characteristics of Ti6Al4V-TiAl metal-intermetallic laminate (MIL) composites prepared by a novel hot-pack rolling [J]. Mater Charact., 2018, 144: 173
doi: 10.1016/j.matchar.2018.07.010
44 Ren L B, Wang J, Wang H W, et al. A method for preparing titanium alloy sheet by roll bonding using steel plate can [P]. Chin Pat, 201110104578.8, 2011
44 任连宝, 王 俭, 王红武 等. 一种钢板包覆叠轧制备钛合金薄板的方法 [P]. 中国专利, 201110104578.8, 2011)
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.