Please wait a minute...
金属学报  2021, Vol. 57 Issue (12): 1567-1578    DOI: 10.11900/0412.1961.2021.00031
  研究论文 本期目录 | 过刊浏览 |
CoCrFeNiCu高熵合金与304不锈钢真空扩散焊
李娟1, 赵宏龙1(), 周念2, 张英哲3, 秦庆东1(), 苏向东1
1.贵州理工学院 贵州省轻金属材料制备技术重点实验室 贵阳 550003
2.贵州理工学院 材料与能源工程学院 贵阳 550003
3.贵州理工学院 贵州省特种功能材料2011协同创新中心 贵阳 550003
Diffusion Bonding of CoCrFeNiCu High-Entropy Alloy to 304 Stainless Steel
LI Juan1, ZHAO Honglong1(), ZHOU Nian2, ZHANG Yingzhe3, QIN Qingdong1(), SU Xiangdong1
1.Key Laboratory of Light Metal Materials Processing Technology of Guizhou Province, Guizhou Institute of Technology, Guiyang 550003, China
2.School of Materials and Energy Engineering, Guizhou Institute of Technology, Guiyang 550003, China
3.Special Functional Materials Collaborative Innovation Center of Guizhou Province, Guizhou Institute of Technology, Guiyang 550003, China
引用本文:

李娟, 赵宏龙, 周念, 张英哲, 秦庆东, 苏向东. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊[J]. 金属学报, 2021, 57(12): 1567-1578.
Juan LI, Honglong ZHAO, Nian ZHOU, Yingzhe ZHANG, Qingdong QIN, Xiangdong SU. Diffusion Bonding of CoCrFeNiCu High-Entropy Alloy to 304 Stainless Steel[J]. Acta Metall Sin, 2021, 57(12): 1567-1578.

全文: PDF(4293 KB)   HTML
摘要: 

研究了CoCrFeNiCu高熵合金(HEA)和304不锈钢(304SS)在不同温度下的固相扩散焊,通过SEM、EBSD、TEM及XRD分析了扩散焊后的组织变化、晶体类型的转变以及相析出,并进行了力学性能测试。结果显示:固相扩散能实现2种合金的连接,低温下界面处残留有孔洞;随着温度的升高,扩散能力增强,界面处气孔消失,变得致密;在扩散层内没有发现金属间化合物,形成了全固溶组织,扩散层的厚度在10~31 μm之间;硬度测试显示,CoCrFeNiCu HEA-扩散层-304SS母材硬度呈梯度增加,晶体结构类型以亚结构和再结晶结构为主,小角度晶界占93%;拉伸强度测试显示,材料均断裂于HEA母材处,焊接接头的强度高于母材,实现了高质量连接。

关键词 高熵合金扩散焊组织演变力学性能    
Abstract

During fusion welding of the Cu-containing high-entropy alloy (HEA) of CoCrFeNiCu, Cu precipitates at the grain boundary and reduces the welding quality and mechanical properties. Solid-phase diffusion welding is connected with the diffusion of elements, which reduces the segregation of Cu and solves this problem well. In the present work, the study of diffusion welding of CoCrFeNiCu HEA with 304 stainless steel (304SS) was carried by SEM, EBSD, TEM, and XRD. The properties of the microstructure and crystal type were obtained. The results show that element diffusion can achieve high-quality connection between the two metals. As the temperature increases, the diffusion capacity increases. The pores at the interface disappear. The thickness of the diffusion layer is between 10-31 μm, without forming intermetallic compound, which shows that a solid solution microstructure is formed after diffusion. According to the XRD, this microstructure is mainly as CoCrFeNiCuMn, that leads to an improvement in the mechanical properties. The hardness of the CoCrFeNiCu HEA-diffusion layer-304SS shows a gradient increase. The crystal structure type is mainly as substructured and recrystallized structure. The proportion of low-angle grain boundaries is 93% in the diffusion layer. The EBSD test results show that the grain orientation of the welded joint (diffusion layer) has changed, mostly concentrated on the (111) plane. This also causes anisotropy of the mechanical properties. Tensile performance test showed that the material fractured in the CoCrFeNiCu HEA base material area. These show that diffusion welding achieves a high-quality connection of the two materials.

Key wordshigh-entropy alloy    diffusion weld    evolution of microstructure    mechanical property
收稿日期: 2021-01-19     
ZTFLH:  TG457.1  
基金资助:国家自然科学基金项目(51964011);贵州省科技计划项目No.[2020]1Y235,贵州省流程性工业新过程工程研究中心项目No.[2017]021,以及贵州省轻金属材料制备技术重点实验室项目No.[2016]5104
作者简介: 秦庆东,20140441@git.edu.cn,主要从事金属材料的焊接研究赵宏龙,20201015@git.edu.cn,主要从事高熵合金的焊接研究
李 娟,女,1990年生,博士
AlloyCrCoFeNiCuMnCSiMoPS
CoCrFeNiCu HEA19.0219.6418.9220.8221.60------
304SS18.92-Bal.9.210.141.960.140.610.37< 0.03< 0.03
表1  焊接母材的化学成分 (mass fraction / %)
图1  拉伸试样示意图
图2  CoCrFeNiCu HEA母材的OM像、XRD谱、SEM像和EDS结果
图3  304SS母材的OM像和XRD谱
图4  不同焊接温度下CoCrFeNiCu HEA/304SS焊接接头OM和SEM像
图5  1100℃扩散焊后CoCrFeNiCu HEA母材的TEM像和EDS分析
图6  不同焊接温度下CoCrFeNiCu HEA/304SS焊接接头EDS线扫描图
图7  1100℃温度下CoCrFeNiCu HEA/304SS扩散焊接头断口表面SEM像和EDS元素面分布图
图8  1100℃焊接接头断口中颗粒状相(图7) EDS定量分析和断口XRD谱
图9  不同焊接温度下CoCrFeNiCu HEA/304SS焊接接头的硬度分布图
图10  不同焊接温度下CoCrFeNiCu HEA/304SS焊接接头的应力-应变曲线
图11  CoCrFeNiCu HEA母材和1100℃下CoCrFeNiCu HEA/304SS焊接接头的EBSD图和极图
图12  CoCrFeNiCu HEA母材和1100℃下CoCrFeNiCu HEA/304SS焊接接头晶粒取向偏差角和晶体结构组成
1 Murty B S, Yeh J W, Ranganathan S. High-Entropy Alloys [M]. Amsterdam: Elsevier, 2014: 5
2 Gao M C, Yeh J W, Liaw P K, et al. High-Entropy Alloys: Fundamentals and Applications [M]. Switzerland: Springer, 2016: 12
3 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
4 Bhattacharjee T, Zheng R X, Chong Y, et al. Effect of low temperature on tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy [J]. Mater. Chem. Phys., 2018, 210: 207
5 Sanchez J M, Vicario I, Albizuri J, et al. Phase prediction, microstructure and high hardness of novel light-weight high entropy alloys [J]. J. Mater. Res. Technol., 2019, 8: 795
6 Li P, Wang S, Xia Y Q, et al. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy [J]. J. Mater. Sci. Technol., 2020, 45: 59
7 Li P, Sun H T, Wang S, et al. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to GH4169 superalloy [J]. Mater. Sci. Eng., 2020, A793: 139843
8 Lei Y, Hu S P, Yang T L, et al. Vacuum diffusion bonding of high-entropy Al0.85CoCrFeNi alloy to TiAl intermetallic [J]. J. Mater. Process. Technol., 2020, 278: 116455
9 Li P, Sun H T, Wang S, et al. Rotary friction welding of AlCoCrFeNi2.1 eutectic high entropy alloy [J]. J. Alloys Compd., 2020, 814: 152322
10 Ding W, Wang X J, Liu N, et al. Diffusion bonding of copper and 304 stainless steel with an interlayer of CoCrFeMnNi high-entropy alloy [J]. Acta Metall. Sin., 2020, 56: 1084
10 丁 文, 王小京, 刘 宁等. CoCrFeMnNi高熵合金作为中间层的Cu/304不锈钢扩散连接研究 [J]. 金属学报, 2020, 56: 1084
11 Liu Y L, Luo Y C, Zhao D, et al. Interfacial behavior and joint performance of high-entropy alloy CoCrFeMnNi and pure Cu joints obtained by vacuum diffusion welding [J].
11 J. Mech. Eng., 2017, 53(2): 84刘玉林, 罗永春, 赵 丹等. 高熵合金(CoCrFeMnNi)/铜真空扩散连接的界面行为及接头性能研究 [J]. 机械工程学报, 2017, 53(2): 84
12 Verma A, Tarate P, Abhyankar A C, et al. High temperature wear in CoCrFeNiCux high entropy alloys: The role of Cu [J]. Scr. Mater., 2019, 161: 28
13 Ouyang C S, Liu X B, Luo Y S, et al. High-temperature tribological properties of Ti3SiC2-Ni based self-lubricating composite coatings prepared on 304 stainless steel by laser cladding [J]. Surf. Technol., 2020, 49(8): 161
13 欧阳春生, 刘秀波, 罗迎社等. 304不锈钢表面激光制备Ti3SiC2-Ni基自润滑复合涂层的高温摩擦学性能 [J]. 表面技术, 2020, 49(8): 161
14 Wang W L, Hu L, Luo S B, et al. Liquid phase separation and rapid dendritic growth of high-entropy CoCrCuFeNi alloy [J]. Intermetallics, 2016, 77: 41
15 Gao X Y, Liu N, Jin Y X, et al. Microstructural evolution and hardness of CoxCrCuFeNi high-entropy alloys [J]. Mater. Sci. Forum 2014, 789: 79
16 Chen X M, Wang X N, Liu Z G, et al. Effect of Cu content on microstructure transformation and mechanical properties of Fe-Al dissimilar laser welded joints [J]. Opt. Laser Technol., 2020, 126: 106078
17 Guo T, Li J S, Wang J, et al. Liquid-phase separation in undercooled CoCrCuFeNi high entropy alloy [J]. Intermetallics, 2017, 86: 110
18 Deng D A, Kiyoshima S. Influence of annealing temperature on calculation accuracy of welding residual stress in a SUS304 stainless steel joint [J]. Acta Metall. Sin., 2014, 50: 626
18 邓德安, Kiyoshima S. 退火温度对SUS304不锈钢焊接残余应力计算精度的影响 [J]. 金属学报, 2014, 50: 626
19 Bai Y, Akita M, Uematsu Y, et al. Improvement of fatigue properties in type 304 stainless steel by annealing treatment in nitrogen gas [J]. Mater. Sci. Eng., 2014, A607: 578
20 Yuan X J, Tang K L, Deng Y Q, et al. Impulse pressuring diffusion bonding of a copper alloy to a stainless steel with/without a pure nickel interlayer [J]. Mater. Des., 2013, 52: 359
21 Tao W J, Zhang W Q, Fu H M. Diffusion behavior of Cu and Ni atoms in CuCoCrFeNi high entropy alloy [J]. Trans. Mater. Heat Treat., 2017, 38(11): 34
21 陶文静, 张伟强, 付华萌. Cu和Ni原子在高熵合金CuCoCrFeNi中的扩散行为 [J]. 材料热处理学报, 2017, 38(11): 34
22 Hao X H, Dong H G, Xia Y Q, et al. Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100 - xCux high-entropy alloy interlayer [J]. J. Alloys Compd., 2019, 803: 649
23 Nagase T, Todai M, Nakano T. Liquid phase separation in Ag-Co-Cr-Fe-Mn-Ni, Co Cr-Cu-Fe-Mn-Ni and Co-Cr-Cu-Fe-Mn-Ni-B high entropy alloys for biomedical application [J]. Crystals, 2020, 10: 527
24 Wang Z H, Wang H, He D Y, et al. Microstructure characterization of CoCrCuFeNiMn high entropy alloys by plasma cladding [J]. Rare Met. Mater. Eng., 2015, 44: 644
24 王智慧, 王 虎, 贺定勇等. 等离子熔覆CoCrCuFeNiMn高熵合金组织研究 [J]. 稀有金属材料与工程, 2015, 44: 644
25 Oh S M, Hong S I. Microstructural stability and mechanical properties of equiatomic CoCrCuFeNi, CrCuFeMnNi, CoCrCuFeMn alloys [J]. Mater. Chem. Phys., 2018, 210: 120
26 Qin J C, Cui R J, Huang Z H., et al. Effect of low angle grain boundaries on mechanical properties of DD5 single crystal Ni-base superalloy [J].
26 J. Aeronaut. Mater., 2017, 37(3): 24秦健朝, 崔仁杰, 黄朝晖等. 小角度晶界对DD5镍基单晶高温合金力学性能的影响 [J]. 航空材料学报, 2017, 37(3): 24
27 Liu B, Eisenlohr P, Roters F, et al. Simulation of dislocation penetration through a general low-angle grain boundary [J]. Acta Mater., 2012, 60: 5380
28 Hughes D A, Liu Q, Chrzan D C, et al. Scaling of microstructural parameters: Misorientations of deformation induced boundaries [J]. Acta Mater., 1997, 45: 105
29 Hao Y P, Tan C W, Yu X D, et al. Effect of grain boundary misorientation angle on diffusion behavior in molybdenum-tungsten systems [J]. J. Alloys Compd., 2020, 819: 152975
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[13] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.