Please wait a minute...
金属学报  2022, Vol. 58 Issue (5): 581-598    DOI: 10.11900/0412.1961.2021.00367
  综述 本期目录 | 过刊浏览 |
脉冲电流调控金属固体中的残余应力
张新房1(), 向思奇1, 易坤1, 郭敬东2()
1.北京科技大学 冶金与生态工程学院 北京 100083
2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Controlling the Residual Stress in Metallic Solids by Pulsed Electric Current
ZHANG Xinfang1(), XIANG Siqi1, YI Kun1, GUO Jingdong2()
1.School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
Xinfang ZHANG, Siqi XIANG, Kun YI, Jingdong GUO. Controlling the Residual Stress in Metallic Solids by Pulsed Electric Current[J]. Acta Metall Sin, 2022, 58(5): 581-598.

全文: PDF(2606 KB)   HTML
摘要: 

脉冲电流处理技术作为一种新的材料处理技术,近年来被广泛应用于材料中残余应力的消除与调控。本文简要综述了残余应力的产生、危害及其传统控制手段,详细回顾了多种脉冲电流作用方式下的残余应力演变特征,并对各处理方式下的残余应力演化机理进行了简要讨论。结果表明,高能脉冲电流作用下,金属材料内部和表面的残余应力在极短的时间内(通常小于1 s)可以得到有效消除,消除率最高可达100%;电流密度越大,残余应力消除率越高,金属材料内部初始残余应力越大残余应力越容易得到消除。低能连续脉冲电流处理的实验结果则存在着残余应力变大、变小、不变等多种响应方式,其与材料类型和脉冲电流参数有重要关系。采用脉冲电流和外加应力耦合的处理方式对材料中的残余应力进行调控效果良好。在材料加工过程中耦合低能连续脉冲电流能够有效地在材料表面引入残余压应力,提高材料的抗疲劳和抗腐蚀性能。脉冲电流通过材料时产生锤击的电冲击技术,可以将材料表面的拉应力转化为压应力,从而提升材料的性能,此技术有效突破了高能脉冲电流消除残余应力能量要求过高的限制,并能实现工件服役现场直接定区域处理。脉冲电流处理消除残余应力的机理是:脉冲电流导致的Joule热效应和电致塑性效应促进位错运动,降低材料的流变应力,从而使材料可以在更低的应力水平上发生塑性变形,其中起关键作用的是电致塑性效应。脉冲电流导致的应力改变(热应力、箍缩效应、磁致伸缩效应、瞬时热膨胀应力)、外加应力(变形、冲击)和残余应力的联合作用构成了促进塑性变形的驱动力。

关键词 高能脉冲电流低能连续脉冲电流残余应力电致塑性多场耦合    
Abstract

The generation of residual stress is unavoidable during the preparation and processing of metallic materials. This residual stress reduces the stability of material preparation and processing, particularly the surface tensile stress, which will reduce the fatigue and corrosion resistances of the material. Therefore, the effective regulation of the residual stress is generally required. However, traditional residual stress control methods, such as heat treatment, exhibits low efficiency because they are limited by material size and type. It is crucial to develop a new method for regulating residual stress that is green, low energy consumption, stable, effective, and applicable to various metallic materials. Pulsed electric current processing is a new material processing technology. It has been widely used in the elimination and control of residual stress in materials in the recent years. Herein, the generation, disadvantages, and traditional control methods of residual stress are briefly reviewed; the characteristics of residual stress under various pulsed electric current treatment modes are reviewed in detail; and the mechanism of residual stress under pulsed electric current is briefly discussed. Based on the obtained results, under the action of high energy pulsed electric current, the residual stress inside and on the surface of the metallic materials can be effectively eliminated in a very short period (approximately 1 s) and the maximum elimination rate can reach 100%. The higher the current density, the higher is the rate of residual stress elimination. Furthermore, the greater the initial residual stress in the material, it is simpler to eliminate residual stress. The experimental results of low energy continuous pulsed electric current treatment show that there are numerous types of response modes, such as increasing, decreasing, and unchanged residual stress, which are associated with the type of material and the pulse parameters. To control the residual stress in the material, the treatment method for coupling pulsed electric current and external stress is effective. Coupling low energy continuous pulsed electric current during material processing can effectively introduce residual compressive stress on the surface of the material and improve the fatigue and corrosion resistances of the material. The electrodynamic treatment technology, which produces hammering when the material is subjected to pulsed electric current, can transform the tensile stress on the material surface into compressive stress to improve the performance of the material. This effectively breaks through the high energy requirement of eliminating residual stress and allowing the workpiece directly in the setting regional area. Residual stress in pulsed electric current processing is removed via the following mechanism: Joule heating and pulsed electric current effects caused by pulsed electric current promote dislocation movement and reduce the flow stress of the material; therefore, the material can undergo plastic deformation at a low stress level, for which the pulsed electric current effect is crucial. The combined action of stress changes caused by pulsed electric current (thermal stress, pinch effect, magnetostrictive effect, and instantaneous thermal expansion stress), external stress (deformation and impact), and residual stress constitute the driving force to promote plastic deformation.

Key wordshigh energy pulsed electric current    low energy continuous pulsed electric current    residual stress    electroplasticity    multi-field coupling
收稿日期: 2021-08-30     
ZTFLH:  TF704.7  
基金资助:国家自然科学基金项目(U21B2082);国家自然科学基金项目(51874023);国家自然科学基金项目(U1860206);国家重点研发计划项目(2019YFC1908403);中央高校基本科研业务费项目(FRF-TP-20-04B)
作者简介: 郭敬东, jdguo@imr.ac.cn,主要从事微电子互连材料的服役损伤研究
张新房,男,1981年生,教授
图1  残余应力在不同尺度的分类[3]
图2  高能脉冲电流振荡衰减波典型波形图[29]
图3  不同峰值电流密度的脉冲电流作用下残余应力的弛豫[24]
图4  高能脉冲电流多参数(电容充电电压)处理下材料x方向和y方向残余应力随处理时间演化关系[40]
图5  不同峰值电流密度高能脉冲电流单次处理下残余应力消除率与初始残余应力关系曲线,及峰值电流密度与可消除的最小残余应力关系直线
图6  不同脉冲电流参数处理下材料的残余应力与位错密度平方根关系[27]
图7  电塑性下的位错增殖模型,即Franke-Read位错增殖模型,电子风力作用下的位错增殖模型及对应于该模型的实际位错形态[27]
图8  连续脉冲方波波形图[44]
图9  16Mn钢和H08Mn2Si焊接接头在单独磁场处理(M-T-1)、单独低能连续脉冲电流处理(C-T-1)及磁场电流耦合处理(MC-T-1)前后的残余应力[28]
图10  1080钢在相同温度下有无电流的残余应力降低量,其中,EPT1、EPT2、EPT3代表3个初始残余应力分别为361.3、412.6和463.6 MPa的样品经电流密度为1.5 A/mm2的脉冲电流(稳定温度190℃)处理1 h,HT1、HT2、HT3代表3个初始残余应力为435.3、344.7和402.0 MPa的样品在190℃处理1 h,EPT4代表初始残余应力为442.4 MPa的样品在电流密度为2.8 A/mm2的脉冲电流处理1 h,HT4初始残余应力为452.3 MPa的样品在310℃处理1 h
图11  低能连续脉冲电流耦合超声波材料表面处理示意图[49]
图12  碳钢经不同处理方式后表面残余应力状态[49]
图13  电冲击装置内部结构图[62]
图14  不同处理方式后AMg6合金焊接板上垂直于焊缝的直线AA上的残余应力分布[62]
1 Mi G M, translated by Zhu J P, Shao H M. Generation and Countermeasures of Residual Stress [M]. Beijing: China Machine Press, 1983: 1
1 (米谷茂著. 朱荆璞, 邵会孟译. 残余应力的产生和对策 [M]. 北京: 机械工业出版社, 1983: 1)
2 Withers P J. Residual stress and its role in failure [J]. Rep. Prog. Phys., 2007, 70: 2211
doi: 10.1088/0034-4885/70/12/R04
3 Zheng J Y. Research on the theory and key technology of residual stress relief based on Electropulsing method [D]. Hangzhou: Zhejiang University, 2011
3 郑建毅. 电脉冲法消除残余应力的理论及关键技术研究 [D]. 杭州: 浙江大学, 2011
4 Seeger A, Donth H, Kochendörfer A. Theorie der Versetzungen in eindimensionalen Atomreihen [J]. Zeitsch. für Physik, 1953, 134: 173
5 Zhang Z, Li L, Yang Y, et al. Machining distortion minimization for the manufacturing of aeronautical structure [J]. Int. J. Adv. Manuf. Technol., 2014, 73: 1765
6 Li C, Liu Z Y, Fang X Y, et al. Residual stress in metal additive manufacturing [J]. Procedia CIRP, 2018, 71: 348
doi: 10.1016/j.procir.2018.05.039
7 Xin H H, Correia J A F O, Veljkovic M, et al. Residual stress effects on fatigue life prediction using hardness measurements for butt-welded joints made of high strength steels [J]. Int. J. Fatigue, 2021, 147: 106175
doi: 10.1016/j.ijfatigue.2021.106175
8 Peng Y W, Chen C M, Li X Y, et al. Effect of low-temperature surface carburization on stress corrosion cracking of AISI 304 austenitic stainless steel [J]. Surf. Coat. Technol., 2017, 328: 420
doi: 10.1016/j.surfcoat.2017.08.058
9 Ge M Z, Xiang J Y, Yang L, et al. Effect of laser shock peening on the stress corrosion cracking of AZ31B magnesium alloy in a simulated body fluid [J]. Surf. Coat. Technol., 2017, 310: 157
doi: 10.1016/j.surfcoat.2016.12.093
10 Zhou A J, Sun D L, Yang D Z. The natural aging characteristics of 2091 Al-Li alloy [J]. Mater. Mech. Eng., 1996, 20(5): 24
10 周爱军, 孙东立, 杨德庄. 2091铝锂合金的自然时效特性 [J]. 机械工程材料, 1996, 20(5): 24
11 Liu H, Zhao G, Liu C M, et al. Artificial aging precipitation behavior of 6000 series alloys naturally aged and pre-aged [J]. Trans. Mater. Heat Treat., 2008, 29(4): 74
11 刘 宏, 赵 刚, 刘春明 等. 自然时效及预时效6000系合金人工时效析出行为 [J]. 材料热处理学报, 2008, 29(4): 74
12 Nazari F, Honarpisheh M, Zhao H Y. Effect of stress relief annealing on microstructure, mechanical properties, and residual stress of a copper sheet in the constrained groove pressing process [J]. Int. J. Adv. Manuf. Technol., 2019, 102: 4361
13 Sharma V, Pandey P M. Optimization of machining and vibration parameters for residual stresses minimization in ultrasonic assisted turning of 4340 hardened steel [J]. Ultrasonics, 2016, 70: 172
doi: 10.1016/j.ultras.2016.05.001 pmid: 27179142
14 Wang Q C. Evaluation and relief of residual stresses in aluminum alloys for aircraft structures [D]. Hangzhou: Zhejiang University, 2003
14 王秋成. 航空铝合金残余应力消除及评估技术研究 [D]. 杭州: 浙江大学, 2003
15 Zhang J X, Liu K, Zhao K, et al. A study on the relief of residual stresses in weldments with explosive treatment [J]. Int. J. Solids Struct., 2005, 42: 3794
doi: 10.1016/j.ijsolstr.2004.11.017
16 Ji S D, Zhang L G, Fang H Y, et al. Influence of local peening on welding residual stress of Francis turbine runner [J]. Trans. China Weld. Inst., 2007, 28(1): 81
16 姬书得, 张利国, 方洪渊 等. 局部锤击法对水轮机转轮焊接残余应力场的影响 [J]. 焊接学报, 2007, 28(1): 81
17 Chen D S, Wang L W, Liu Y M, et al. Research on the decreasing residual stress of casting by using static force method [J]. Mach. Tool Hydraulics, 2005, (5): 30
17 陈殿生, 王立威, 刘雅梅 等. 静态作用应力法消除铸件残余应力的研究 [J]. 机床与液压, 2005, (5): 30
18 Tang F, Lu A L, Mei J F, et al. Research on residual stress reduction by a low frequency alternating magnetic field [J]. J. Mater. Process. Technol., 1998, 74: 255
doi: 10.1016/S0924-0136(97)00279-3
19 Gao H J, Wu S F, Wu Q, et al. Experimental and simulation investigation on thermal-vibratory stress relief process for 7075 aluminium alloy [J]. Mater. Des., 2020, 195: 108954
doi: 10.1016/j.matdes.2020.108954
20 Zhang X F, Qin R S. Electric current-driven migration of electrically neutral particles in liquids [J]. Appl. Phys. Lett., 2014, 104: 114106
doi: 10.1063/1.4869465
21 Xiao S H, Han E H, Guo J D. Effect of high current density electropulsing on the corrosion resistance of X70 pipeline steel [J]. Chin. J. Mater. Res., 2006, 20: 1
21 肖素红, 韩恩厚, 郭敬东. 脉冲电流处理对X70管线钢腐蚀性能的影响 [J]. 材料研究学报, 2006, 20: 1
22 Qin R S. Critical assessment 8: Outstanding issues in electropulsing processing [J]. Mater. Sci. Technol., 2015, 31: 203
doi: 10.1179/1743284714Y.0000000630
23 Lobanov L, Pivtorak V, Paschin N, et al. Application of local current pulses for determination and control of residual stresses [J]. Adv. Mater. Res., 2014, 996: 386
24 Wang J P, He X C, Wang B Q, et al. Residual stress release in quenched 40Cr steel under electropulsing [J]. Chin. J. Mater. Res., 2007, 21: 41
24 王景鹏, 贺笑春, 王宝全 等. 脉冲电流作用下40Cr钢淬火残余应力的消除 [J]. 材料研究学报, 2007, 21: 41
25 Pan L, He W, Gu B P. Effects of electric current pulse on dislocation density and residual stresses of 45 carbon steel workpieces [J]. Trans. Mater. Heat Treat., 2015, 36(suppl.1) : 134
25 潘 龙, 何 闻, 顾邦平. 电流脉冲对45碳钢试样位错密度和残余应力的影响 [J]. 材料热处理学报, 2015, 36(): 134
26 Pan L, Wang B S, Xu Z Q. Effects of electropulsing treatment on residual stresses of high elastic cobalt-base alloy ISO 5832-7 [J]. J. Alloys Compd., 2019, 792: 994
doi: 10.1016/j.jallcom.2019.04.091
27 Xiang S Q, Zhang X F. Dislocation structure evolution under electroplastic effect [J]. Mater. Sci. Eng., 2019, A761: 138026
28 Cai Z P, Huang X Q. Residual stress reduction by combined treatment of pulsed magnetic field and pulsed current [J]. Mater. Sci. Eng., 2011, A528: 6287
29 Xiang S Q, Zhang X F. Residual stress removal under pulsed electric current [J]. Acta. Metall. Sin. (Engl. Lett.), 2020, 33: 281
30 Stepanov G V, Babutskii A I. Stress relaxation in steel caused by a high-density current [J]. Strength Mater., 1993, 25: 697
doi: 10.1007/BF01135524
31 Stepanov G V, Babutskii A I. Effect of electric current on stress relaxation in metal [J]. Strength Mater., 1996, 28: 125
doi: 10.1007/BF02215837
32 Stepanov G V, Babutskii A I, Mameev I A. The effect of the pulse electric current treatment on residual stresses arising in grinding [J]. Strength Mater., 2009, 41: 623
doi: 10.1007/s11223-009-9171-y
33 Stepanov G, Babutsky A, Kruszka L. Residual stresses relaxation caused by pulsed electric current [J]. Mater. Sci. Forum, 2010, 638-642: 2429
doi: 10.4028/www.scientific.net/MSF.638-642.2429
34 Stepanov G V, Babutskii A I, Mameev I A, et al. Experimental evaluation of pulse electric current effect on residual stresses in composite-to-copper joints [J]. Strength Mater., 2008, 40: 452
doi: 10.1007/s11223-008-9055-6
35 Babutskyi A, Chrysanthou A, Chyzhyk G, et al. Effect of high-density current electropulsing on corrosion cracking of titanium aluminide intermetallic [J]. Mater. Corros., 2021, 72: 1243
36 Deng G H. Research on the electro-pulse generator for residual stress relief [D]. Hangzhou: Zhejiang University, 2014
36 邓国辉. 电流脉冲消除残余应力装置的研究 [D]. 杭州: 浙江大学, 2014
37 Pan L. Research on the mechanisms and related experimtents of controlling residual stress in carbon steel based on pulse current method [D]. Hangzhou: Zhejiang University, 2016
37 潘 龙. 脉冲电流法调控碳钢残余应力的机理及相关实验研究 [D]. 杭州: 浙江大学, 2016
38 Sheng Y, Hua Y, Wang X, et al. Application of high-density electropulsing to improve the performance of metallic materials: Mechanisms, microstructure and properties [J]. Materials, 2018, 11: 185.
doi: 10.3390/ma11020185
39 Gu B P, Lai J T, Hu X, et al. Application of high-energy oscillating electric current pulse to relieve pulsed-laser surface irradiation induced residual stress in AISI 1045 steel [J]. J. Mater. Res., 2017, 32: 473
doi: 10.1557/jmr.2016.402
40 Pan L. Influence of electropulsing treatment on residual stresses and tensile strength of as-quenched medium carbon steel [J]. J. Phys.: Conf. Ser., 2019, 1187: 032054
41 Ding S L, Xiang S Q, Ba X, et al. Improvement of corrosion resistance of simulated weld heat affected zone in high strength pipeline steel using electropulsing [J]. ISIJ Int., 2020, 60: 2015
doi: 10.2355/isijinternational.ISIJINT-2019-565
42 Babutskyi A, Mohin M, Chrysanthou A, et al. Effect of electropulsing on the fatigue resistance of aluminium alloy 2014-T6 [J]. Mater. Sci. Eng., 2020, A772: 138679
43 Ben D, Yang H J, Ma Y R, et al. Declined fatigue crack propagation rate of a high-strength steel by electropulsing treatment [J]. Adv. Eng. Mater., 2019, 21: 1801345
doi: 10.1002/adem.201801345
44 Xiang S Q, Ma R, Zhang X F. Removing hydrogen in solid metal using electric current pulse [J]. J. Alloys Compd., 2020, 845: 156083
doi: 10.1016/j.jallcom.2020.156083
45 Song X D, Wang F, Qian D S, et al. Tailoring the residual stress and mechanical properties by electroshocking treatment in cold rolled M50 steel [J]. Mater. Sci. Eng., 2020, A780: 139171
46 Grimm T J, Roth J T, Ragai I. Electrically assisted global springback elimination in AMS-T-9046 titanium after single point incremental forming [A]. ASME 2016 11th International Manufacturing Science and Engineering Conference [C]. Blacksburg: ASME, 2016
47 Park G D, Tran V L, Hong S T, et al. Electrically assisted stress relief annealing of automotive springs [J]. J. Mech. Sci. Technol., 2017, 31: 3943
doi: 10.1007/s12206-017-0740-x
48 Levitin V V, Loskutov S V. The effect of a current pulse on the fatigue of titanium alloy [J]. Solid State Commun., 2004, 131: 181
doi: 10.1016/j.ssc.2004.05.011
49 Ye Y, Li X, Kuang J, et al. Effects of electropulsing assisted ultrasonic impact treatment on welded components [J]. Mater. Sci. Technol., 2015, 31: 1583
doi: 10.1179/1743284715Y.0000000078
50 Ye Y D, Kuang J, Kure-Chu S Z, et al. Improvement of microstructure and surface behaviors of welded S50C steel components under electropulsing assisted ultrasonic surface modification [J]. J. Mater. Res., 2016, 31: 2125
doi: 10.1557/jmr.2016.127
51 Wang H B, Yang X H, Li H, et al. Enhanced fatigue performance and surface mechanical properties of AISI 304 stainless steel induced by electropulsing-assisted ultrasonic surface rolling process [J]. J. Mater. Res., 2018, 33: 3827
doi: 10.1557/jmr.2018.307
52 Wang L S, Ye X X, Liu T, et al. Effects of electropulsing assisted ultrasonic impact treatment on residual stress and microhardness of weld [J]. Mater. Rev., 2015, 29(18): 71
52 王铃声, 叶肖鑫, 刘 涛 等. 电脉冲辅助超声冲击技术对焊缝残余应力及显微硬度的影响 [J]. 材料导报, 2015, 29(18): 71
53 Tang G Y, Zheng M X, Zhu Y H, et al. Electroplastic drawing of austenitic stainless steel [J]. Steel Wire Products, 1997, 23(1): 8
53 唐国翌, 郑明新, 朱永华 等. 奥氏体不锈钢丝的电塑性拔制 [J]. 金属制品, 1997, 23(1): 8
54 Egea A J S, Rojas H A G, Celentano D J, et al. Thermomechanical analysis of an electrically assisted wire drawing process [J]. J. Manuf. Sci. Eng., 2017, 139: 111017
doi: 10.1115/1.4037798
55 Ao D W, Chu X R, Yang Y, et al. Effect of electropulsing on springback during V-bending of Ti-6Al-4V titanium alloy sheet [J]. Int. J. Adv. Manuf. Technol., 2018, 96: 3197
56 Liang P C, Lin K L. Non-deformation recrystallization of metal with electric current stressing [J]. J. Alloys Compd., 2017, 722: 690
doi: 10.1016/j.jallcom.2017.06.032
57 Park J W, Jeong H J, Jin S W, et al. Effect of electric current on recrystallization kinetics in interstitial free steel and AZ31 magnesium alloy [J]. Mater. Charact., 2017, 133: 70
doi: 10.1016/j.matchar.2017.09.021
58 Sydorenko Y M, Pashchyn M O, Mykhodui O L, et al. Effect of pulse current on residual stresses in AMg6 aluminum alloy in electrodynamic treatment [J]. Strength Mater., 2020, 52: 731
doi: 10.1007/s11223-020-00226-2
59 Lobanov L M, Pashchin N A, Mikhodui O L, et al. Electric pulse component effect on the stress state of AMg6 aluminum alloy welded joints under electrodynamic treatment [J]. Strength Mater., 2018, 50: 246
doi: 10.1007/s11223-018-9965-x
60 МLobanov L, АPashchin N, Mikhodui O L, et al. Influence of the parameters of electrodynamic actions on the stressed state of welded joints of sheets of AMg6 alloy [J]. Mater. Sci., 2017, 53: 1
61 Lobanov L, Pashсhin N. Electrodynamic treatment by electric current pulses as effective method of control of stress-strain states and improvement of life of welded structures [J]. Procedia Struct. Integr., 2019, 16: 27
doi: 10.1016/j.prostr.2019.07.018
62 Lobanov L M, Kondratenko I P, Zhiltsov A V, et al. Development of post-weld electrodynamic treatment using electric current pulses for control of stress-strain states and improvement of life of welded structures [J]. Mater. Perform. Charact., 2018, 7: 941
63 Okazaki K, Kagawa M, Conrad H. An evaluation of the contributions of skin, pinch and heating effects to the electroplastic effect in titatnium [J]. Mater. Sci. Eng., 1980, 45: 109
64 Sprecher A F, Mannan S L, Conrad H. Overview no. 49: On the mechanisms for the electroplastic effect in metals [J]. Acta Metall., 1986, 34: 1145
doi: 10.1016/0001-6160(86)90001-5
65 Roschupkin A M, Bataronov I L. Physical basis of the electroplastic deformation of metals [J]. Russian Phys. J., 1996, 39: 230
doi: 10.1007/BF02067644
66 Kravchenko V Y. Effect of directed electron beam on moving dislocations [J]. Sov. Phys. JETP, 1967, 24: 1135
67 Roshchupkin A M, Miloshenko V E, Kalinin V E. The electron retardation of dislocations in metals [J]. Fiz. Tverd. Tela, 1979, 21: 909
68 Klimov K M, Shnyrev G D, Novikov I I. " Electroplasticity" of metals [J]. Sov. Phys. Dokl., 1975, 19: 787
69 Cao W, Sprecher A F, Conrad H. Measurement of the electroplastic effect in Nb [J]. J. Phys.: Sci. Instrum., 1989, 22E: 1026
70 Molotskii M. Work hardening of crystals in a magnetic field [J]. Philos. Mag. Lett., 1996, 73: 11
doi: 10.1080/095008396181055
71 Molotskii M I. Theoretical basis for electro- and magnetoplasticity [J]. Mater. Sci. Eng., 2000, A287, 248
72 Zhao S T, Zhang R P, Chong Y, et al. Defect reconfiguration in a Ti-Al alloy via electroplasticity [J]. Nat. Mater., 2021, 20: 468
doi: 10.1038/s41563-020-00817-z
73 Troitskii O A, Rozno A G. Electroplastic effect in metals [J]. Fiz. Tverd. Tela, 1970, 12: 203
74 Li C, Liu Z Y, Fang X Y, et al. Residual stress in metal additive manufacturing [J]. Procedia CIRP, 2018, 71: 348
doi: 10.1016/j.procir.2018.05.039
75 Conrad H. Electroplasticity in metals and ceramics [J]. Mater. Sci. Eng., 2000, A287: 276
76 Conrad H. Thermally activated plastic flow of metals and ceramics with an electric field or current [J]. Mater. Sci. Eng., 2002, A322: 100
77 Troitskii O A, Likhtman V I. The anisotropy of the action of electron and γ radiation on the deformation of zinc single crystals in the brittle state [J]. Soviet Phys. Doklady, 1963, 8: 91
78 Troitskii O A. Effect of the electron state of a metal on its mechanical properties and the phenomenon of electroplasticity [J]. Strength Mater., 1977, 9: 35
doi: 10.1007/BF01534611
79 Troitskii O A. Electromechanical effect in metals [J]. Zhetf Pisma Redaktsiiu, 1969, 10: 18
80 Okazaki K, Kagawa M, Conrad H. Additional results on the electroplastic effect in metals [J]. Scr. Metall., 1979, 13: 277
doi: 10.1016/0036-9748(79)90311-9
81 Okazaki K, Kagawa M, Conrad H. Effects of strain rate, temperature and interstitial content on the electroplastic effect in titanium [J]. Scr. Metall., 1979, 13: 473
doi: 10.1016/0036-9748(79)90072-3
82 Tang D W, Zhou B L, Cao H, et al. Thermal stress relaxation behavior in thin films under transient laser-pulse heating [J]. J. Appl. Phys., 1993, 73: 3749
doi: 10.1063/1.352907
83 Ma H C, Guo J D, Chen J Q, et al. Prediction model of lifetime for copper pillar bumps under coupling effects of current and thermal cycling [J]. J. Mater. Sci. -Mater. Electron., 2016, 27: 1184
doi: 10.1007/s10854-015-3871-9
84 Zhang H X. Dislocation behavior under the coupling of electron wind force and joule heating in plastic forming of Al-Zn-Mg alloy [D]. Beijing: University of Science and Technology Beijing, 2021
84 张鹤雄. Al-Zn-Mg合金塑性成形中电子风力和焦耳热耦合下的位错行为 [D]. 北京: 北京科技大学, 2021
85 Zhang H X, Zhang X F. Suppressing or promoting: The effect of coupled electron-heat field on serration behavior [J]. J. Alloys Compd., 2020, 818: 152920
doi: 10.1016/j.jallcom.2019.152920
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[3] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[4] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[6] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[7] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[8] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[9] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[10] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[11] 姜霖, 张亮, 刘志权. Al中间层和Ni(V)过渡层对Co/Al/Cu三明治结构靶材背板组件焊接残余应力的影响[J]. 金属学报, 2020, 56(10): 1433-1440.
[12] 毕中南,秦海龙,董志国,王相平,王鸣,刘永泉,杜金辉,张继. 高温合金盘锻件制备过程残余应力的演化规律及机制[J]. 金属学报, 2019, 55(9): 1160-1174.
[13] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[14] 秦海龙,张瑞尧,毕中南,杜洪标,张金辉. GH4169合金圆盘时效过程残余应力的演化规律研究[J]. 金属学报, 2019, 55(8): 997-1007.
[15] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.