Please wait a minute...
金属学报  2020, Vol. 56 Issue (9): 1185-1194    DOI: 10.11900/0412.1961.2020.00026
  本期目录 | 过刊浏览 |
K4169合金循环加载过程中的微观组织演变
吴贇1, 刘雅辉1, 康茂东1,2(), 高海燕1,2, 王俊1,2, 孙宝德1,2
1 上海交通大学材料科学与工程学院 上海 200240
2 上海交通大学上海市先进高温材料及其精密成形重点实验室 上海 200240
Microstructure Evolution of K4169 Alloy During Cyclic Loading
WU Yun1, LIU Yahui1, KANG Maodong1,2(), GAO Haiyan1,2, WANG Jun1,2, SUN Baode1,2
1 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

吴贇, 刘雅辉, 康茂东, 高海燕, 王俊, 孙宝德. K4169合金循环加载过程中的微观组织演变[J]. 金属学报, 2020, 56(9): 1185-1194.
Yun WU, Yahui LIU, Maodong KANG, Haiyan GAO, Jun WANG, Baode SUN. Microstructure Evolution of K4169 Alloy During Cyclic Loading[J]. Acta Metall Sin, 2020, 56(9): 1185-1194.

全文: PDF(4614 KB)   HTML
摘要: 

通过熔模精密铸造、循环加载和微观组织表征等方法研究了K4169合金循环加载过程中的微观组织演变特征,重点分析了不同循环周次后Laves相和δ-Ni3Nb相的变形和断裂特征。结果表明,在室温380 MPa应力幅值循环加载实验中,循环寿命主要取决于显微疏松体积分数,裂纹优先萌生于试样表面的显微疏松位置。Laves相的断裂不受循环周次的影响,在循环加载初期,显微疏松附近的长带状Laves脆性相容易开裂,其内部还产生平行排列的二次裂纹,成为裂纹扩展的敏感区域。δ-Ni3Nb层片呈现2种变形和断裂特征:沿长度方向的开裂;层片表面滑移和断裂。循环加载初期,显微疏松附近的δ-Ni3Nb层片容易产生沿长度方向的开裂,而随着循环周次的增加,远离显微疏松的δ-Ni3Nb层片表面滑移迹线逐渐增多直至滑移断裂。γ-Ni基体在循环加载过程中产生孪生变形特征,导致应变局部化程度加剧,进而使Laves相和δ-Ni3Nb层片周围产生应力集中。

关键词 K4169高温合金循环应力微观组织演变Laves相δ-Ni3Nb相    
Abstract

K4169 nickel-based superalloy has been widely used to fabricate high-strength components in aircraft engine. When in service, especially affected by vibration and start-stop process, this alloy is inevitably affected by the external cyclic stress. Therefore, it is of great significance for researchers to understand the microstructure evolution in K4169 while cyclic loading. In the present study, the microstructure evolution of K4169 during cyclic loading has been examined and discussed in detail by using investment casting, cyclic loading and microstructure characterization methods. The cyclic loading test with stress amplitude of 380 MPa was carried out on a pull-push type fatigue machine at room temperature. The dependence of cycle times or fatigue life of specimens with different casting conditions on microporosity content has been discussed. Special emphases have been put on investigating the deformation and fracture characteristics of Laves and δ-Ni3Nb phases under the influence of microporosity. The results show that the cyclic life was mainly dominated by the content of microporosity. The crack initiation occurred mainly near the microporosity of the specimen surface. The specimen with high microporosity content exhibits the characteristic of complete brittle fracture, while the specimen with low microporosity content exhibits obvious transgranular fracture characteristics. In addition, the fracture of Laves phase was not apparently affected by cycle number. At the beginning of cyclic loading, the long-striped Laves phase near the microporosity was easy to crack, which became the sensitive area of crack growth, and extending in the manner of parallel secondary cracks. The δ-Ni3Nb plates near microporosity exhibited two obvious cyclic deformation and fracture characteristics depending on their arrangement (or growth orientation) relative to external loading axis: cracking along length direction (or denoted as branch cracking); and exhibiting slip lines and cracks on the surface of δ-Ni3Nb plates. At the initial stage of cyclic loading, δ-Ni3Nb plates were prone to crack along the length direction, while the surfaces of the δ-Ni3Nb plates far from microporosity appear the characteristics of slipping, bending and fracture in turn with the decrease of microporosity content or increase of cyclic cycles. Edge dislocations have been found within δ-Ni3Nb plates, indicating the transition from screw dislocations to edge dislocations under cyclic loading. Additionally, the twinning deformation of γ-Ni matrix during cyclic loading has been scrutinized through TEM and TKD analyses. The results have been linked to the evolutions of Laves and δ-Ni3Nb phases, i.e., the evolutions were influenced by the increase of strain localization around Laves and δ-Ni3Nb phases.

Key wordsK4169 superalloy    cyclic stress    microstructure evolution    Laves phase    δ-Ni3Nb phase
收稿日期: 2020-01-17     
ZTFLH:  TG132.3  
基金资助:国家自然科学基金项目(51971142);国家科技重大专项项目(2017-Ⅵ-0013-0085);航空科学基金项目(2018ZE57012);上海交通大学新进青年教师启动计划项目(18X100040027)
作者简介: 吴 贇,男,1987年生,博士生
图1  循环加载试棒尺寸示意图
图2  不同热节直径精铸K4169试棒显微疏松的典型OM像
图3  K4169合金在标准热处理态下微观组织特征的SEM像和TEM像(a, b) SEM images showing precipitates(c) TEM image showing precipitates(d) selective area electron diffraction (SAED) patterns of γ-Ni and δ-Ni3Nb (e, f) bright- and dark- field TEM images of γ"-Ni3Nb, respectively (Inset in Fig.3f shows the corresponding SAED pattern)
图4  不同试样中Laves相Feret直径的分布规律
图5  循环周次与显微疏松体积分数的关系曲线
图6  低周次(394 cyc)和高周次(5457 cyc)试样断口形貌的SEM像
图7  断口附近纵截面和断口中的Laves相循环加载断裂特征的SEM像和对应的EDS结果
图8  δ-Ni3Nb层片循环加载变形和断裂特征的SEM像
图9  循环加载断裂后Laves颗粒及其周围组织的EBSD分析Color online
图10  δ-Ni3Nb相变形和断裂机制的SEM和TEM分析(a) SEM image of branch-fractured δ-Ni3Nb phase(b) SEM image of slip lines presenting on δ-Ni3Nb surface of the specimen with average 5457 cyc(c) bright-field TEM image of branch-fractured δ-Ni3Nb(d) HRTEM image, local fast Fourier transform (FFT) and inverse FFT images (insets) of δ-Ni3Nb phase after fatigue
图11  循环加载后γ-Ni基体中孪生变形特征的TEM像和TKD像Color online
[1] Mahadevan S, Nalawade S, Singh J B, et al. Evolution of δ phase microstructure in alloy 718 [A]. 7th International Symposium on Superalloy 718 and Derivatives [C]. Pittsburgh: The Minerals, Metals & Materials Society, 2010: 737
[2] Niang A, Viguier B, Lacaze J. Some features of anisothermal solid-state transformations in alloy 718 [J]. Mater. Charact., 2010, 61: 525
[3] Texier D, Gómez A C, Pierret S, et al. Microstructural features controlling the variability in low-cycle fatigue properties of alloy Inconel 718DA at intermediate temperature [J]. Metall. Mater. Trans., 2016, 47A: 1096
[4] Liu J H, Vanderesse N, Stinville J C, et al. In-plane and out-of-plane deformation at the sub-grain scale in polycrystalline materials assessed by confocal microscopy [J]. Acta Mater., 2019, 169: 260
doi: 10.1016/j.actamat.2019.03.001
[5] Xie X S, Dong J X, Fu S H, et al. Research and development of γ′′ and γ′ strengthened Ni-Fe base superalloy GH4169 [J]. Acta Metall. Sin., 2010, 46: 1289
doi: DOI: 10.3724/SP.J.1037.2010.00436
[5] (谢锡善, 董建新, 付书红等. γ′′和γ′相强化的Ni-Fe基高温合金GH4169的研究与发展 [J]. 金属学报, 2010, 46: 1289)
doi: DOI: 10.3724/SP.J.1037.2010.00436
[6] Paulonis D F, Schirra J J. Alloy 718 at Pratt & Whitney-Historical perspective and future challenges [A]. 5th International Symposium on Superalloys 718, 625, 706, and Derivatives [C]. Pittsburgh: The Minerals, Metals & Materials Society, 2001: 13
[7] Schafrik R E, Ward D D, Groh J R. Application of alloy 718 in GE aircraft engines: Past, present and next five years [A]. 5th International Symposium on Superalloys 718, 625, 706, and Derivatives [C]. Pittsburgh: The Minerals, Metals & Materials Society, 2001: 1
[8] Trosch T, Strößner J, Völkl R, et al. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting [J]. Mater. Lett., 2016, 164: 428
[9] Praveen K V U, Singh V. Effect of heat treatment on Coffin-Manson relationship in LCF of superalloy IN718 [J]. Mater. Sci. Eng., 2008, A485: 352
[10] Xu J H, Huang Z W, Jiang L. Effect of heat treatment on low cycle fatigue of IN718 superalloy at the elevated temperatures [J]. Mater. Sci. Eng., 2017, A690: 137
[11] Slama C, Abdellaoui M. Structural characterization of the aged Inconel 718 [J]. J. Alloys Compd., 2000, 306: 277
doi: 10.1016/S0925-8388(00)00789-1
[12] Rao G A, Kumar M, Srinivas M, et al. Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718 [J]. Mater. Sci. Eng., 2003, A355: 114
[13] Jeong D H, Choi M J, Goto M, et al. Effect of service exposure on fatigue crack propagation of Inconel 718 turbine disc material at elevated temperatures [J]. Mater. Charact., 2014, 95: 232
[14] Yeratapally S R, Glavicic M G, Hardy M, et al. Microstructure based fatigue life prediction framework for polycrystalline nickel-base superalloys with emphasis on the role played by twin boundaries in crack initiation [J]. Acta Mater., 2016, 107: 152
[15] Krueger D D, Antolovich S D, van Stone R H. Effects of grain size and precipitate size on the fatigue crack growth behavior of alloy 718 at 427 ℃ [J]. Metall. Trans., 1987, 18A: 1431
[16] Xiao L, Chen D L, Chaturvedi M C. Effect of boron on fatigue crack growth behavior in superalloy IN 718 at RT and 650 ℃ [J]. Mater. Sci. Eng., 2006, A428: 1
[17] Niang A, Huez J, Lacaze J, et al. Characterizing precipitation defects in nickel based 718 alloy [J]. Mater. Sci. Forum, 2010, 636-637: 517
[18] Dehmas M, Lacaze J, Niang A, et al. TEM study of high-temperature precipitation of delta phase in Inconel 718 alloy [J]. Adv. Mater. Sci. Eng., 2011, 2011: 940634
[19] Jiang H, Dong J X, Zhang M C, et al. Stress relaxation mechanism for typical nickel-based superalloys under service condition [J]. Acta Metall. Sin., 2019, 55: 1211
[19] (江 河, 董建新, 张麦仓等. 服役条件下镍基高温合金应力松弛微观机制 [J]. 金属学报, 2019, 55: 1211)
[20] Liu Y H, Kang M D, Wu Y, et al. Effects of microporosity and precipitates on the cracking behavior in polycrystalline superalloy Inconel 718 [J]. Mater. Charact., 2017, 132: 175
[21] Sui S, Chen J, Fan E X, et al. The influence of Laves phases on the high-cycle fatigue behavior of laser additive manufactured Inconel 718 [J]. Mater. Sci. Eng., 2017, A695: 6
[22] Cao G X, Zhang M C, Dong J X, et al. Effects of Nb content variations on precipitates evolution of GH4169 ingots during their solidification and homogenization processes [J]. Rare Met. Mater. Eng., 2014, 43: 103
[22] (曹国鑫, 张麦仓, 董建新等. Nb含量对GH4169合金钢锭凝固及均匀化过程相演化规律的影响 [J]. 稀有金属材料与工程, 2014, 43: 103)
[23] Pattnaik S, Karunakar D B, Jha P K. Developments in investment casting process—A review [J]. J. Mater. Process. Technol., 2012, 212: 2332
[24] Sigl K M, Hardin R A, Stephens R I, et al. Fatigue of 8630 cast steel in the presence of porosity [J]. Int. J. Cast Met. Res., 2004, 17: 130
[25] Overfelt R A, Sahai V, Ko Y K, et al. Porosity in cast equiaxed alloy 718 [A]. Superalloys 718, 625, 706, and Various Derivatives [C]. Warrendale: The Minerals, Metals & Materials Society, 1994: 189
[26] Flemings M C. Solidification Processing [M]. Weinheim: Wiley, 2006: 19
[27] Wu Y, Li S M, Kang M D, et al. Slip and fracture behavior of δ-Ni3Nb plates in a polycrystalline nickel-based superalloy during fatigue [J]. Scr. Mater., 2019, 171: 36
[28] Hidalgo R, Esnaola J A, Llavori I, et al. Fatigue life estimation of cast aluminium alloys considering the effect of porosity on initiation and propagation phases [J]. Int. J. Fatigue, 2019, 125: 468
[29] Lamm M, Singer R F. The effect of casting conditions on the high-cycle fatigue properties of the single-crystal nickel-base superalloy PWA 1483 [J]. Metall. Mater. Trans., 2007, 38A: 1177
[30] Boehlert C J, Li H, Wang L, et al. Slip system characterization of Inconel 718: Using in-situ scanning electron microscopy [J]. Adv. Mater. Process., 2010, 168(11): 41
[31] Sui S, Chen J, Ming X L, et al. The failure mechanism of 50% laser additive manufactured Inconel 718 and the deformation behavior of Laves phases during a tensile process [J]. Int. J. Adv. Manuf. Technol., 2017, 91: 2733
doi: 10.1007/s00170-016-9901-9
[32] Liu Y H, Wu Y, Kang M D, et al. Fracture mechanisms induced by microporosity and precipitates in isothermal fatigue of polycrystalline nickel based superalloy [J]. Mater. Sci. Eng., 2018, A736: 438
[33] Umakoshi Y, Hagihara K, Nakano T. Operative slip systems and anomalous strengthening in Ni3Nb single crystals with the D0astructure [J]. Intermetallics, 2001, 9: 955
[34] Kelly P M, Ren H P, Qiu D, et al. Identifying close-packed planes in complex crystal structures [J]. Acta Mater., 2010, 58: 3091
[35] Zhang H Y, Zhang S H, Cheng M, et al. Deformation characteristics of δ phase in the delta-processed Inconel 718 alloy [J]. Mater. Charact., 2010, 61: 49
[36] Sugimura H, Kaneno Y, Takasugi T. Alloying behavior of Ni3M-type compounds with D0a structure [J]. Mater. Trans., 2011, 52: 663
[37] Hagihara K, Nakano T, Umakoshi Y. Plastic deformation behaviour and operative slip systems in Ni3Nb single crystals [J]. Acta Mater., 2000, 48: 1469
[1] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[2] 陈建军, 丁雨田, 王琨, 闫康, 马元俊, 王兴茂, 周胜名. Laves相对 GH3625合金管材热挤压过程中爆裂行为的影响[J]. 金属学报, 2021, 57(5): 641-650.
[3] 张啸尘, 孟维迎, 邹德芳, 周鹏, 石怀涛. 预循环应力对高速列车关键结构用铝合金材料疲劳裂纹扩展行为的影响[J]. 金属学报, 2019, 55(10): 1243-1250.
[4] 秦高梧, 谢红波, 潘虎成, 任玉平. 一类介于晶体与准晶体之间的有序结构[J]. 金属学报, 2018, 54(11): 1490-1502.
[5] 李振亮,刘飞,袁爱萍,段宝玉,李晓伟,李一鸣. 轧制变形对喷射沉积含Nd镁合金织构及LPSO相的影响*[J]. 金属学报, 2016, 52(8): 938-944.
[6] 李克俭,蔡志鹏,李轶非,潘际銮. FB2马氏体耐热钢中Laves相在焊接过程中演化行为的研究*[J]. 金属学报, 2016, 52(6): 641-648.
[7] 车欣, 梁兴奎, 陈丽丽, 陈立佳, 李锋. Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc)合金的显微组织及其低周疲劳行为*[J]. 金属学报, 2014, 50(9): 1046-1054.
[8] 马坪, 吴二冬, 李武会, 孙凯, 陈东风. Ti0.7Zr0.3(Cr1-xVx)2合金的结构和贮氢性能*[J]. 金属学报, 2014, 50(4): 454-462.
[9] 王学, 于淑敏, 任遥遥, 刘洪, 刘洪伟, 胡磊. P92钢时效的Laves相演化行为[J]. 金属学报, 2014, 50(10): 1195-1202.
[10] 王学, 李勇, 任遥遥, 刘洪伟, 刘洪, 王伟. Laves相析出对P92钢合金元素再分布的影响[J]. 金属学报, 2014, 50(10): 1203-1209.
[11] 张麦仓,曹国鑫,董建新,郑磊,姚志浩. 基于经典动态模型的GH4169合金钢锭中Laves相的回溶规律分析[J]. 金属学报, 2013, 49(3): 372-378.
[12] 盛立远,章炜,赖琛,郭建亭,奚廷斐,叶恒强. 快速凝固制备Laves相增强NiAl基复合材料的微观组织及力学性能[J]. 金属学报, 2013, 49(11): 1318-1324.
[13] 潘智平,李双明,徐磊,傅恒志. 定向凝固Cu-10.25%Mg过共晶合金中初生Laves相Cu2Mg枝晶三维形貌[J]. 金属学报, 2013, 49(1): 92-100.
[14] 李晓诚 丁雨田 胡勇. Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) 合金的微观组织与磁致伸缩性能[J]. 金属学报, 2012, 48(1): 11-15.
[15] 李克伟 李双明 傅恒志. 电弧熔炼态Laves相Cr2Nb/Cr合金的微观组织演变[J]. 金属学报, 2011, 47(6): 663-670.