|
|
K4169合金循环加载过程中的微观组织演变 |
吴贇1, 刘雅辉1, 康茂东1,2( ), 高海燕1,2, 王俊1,2, 孙宝德1,2 |
1 上海交通大学材料科学与工程学院 上海 200240 2 上海交通大学上海市先进高温材料及其精密成形重点实验室 上海 200240 |
|
Microstructure Evolution of K4169 Alloy During Cyclic Loading |
WU Yun1, LIU Yahui1, KANG Maodong1,2( ), GAO Haiyan1,2, WANG Jun1,2, SUN Baode1,2 |
1 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2 Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, China |
引用本文:
吴贇, 刘雅辉, 康茂东, 高海燕, 王俊, 孙宝德. K4169合金循环加载过程中的微观组织演变[J]. 金属学报, 2020, 56(9): 1185-1194.
Yun WU,
Yahui LIU,
Maodong KANG,
Haiyan GAO,
Jun WANG,
Baode SUN.
Microstructure Evolution of K4169 Alloy During Cyclic Loading[J]. Acta Metall Sin, 2020, 56(9): 1185-1194.
[1] |
Mahadevan S, Nalawade S, Singh J B, et al. Evolution of δ phase microstructure in alloy 718 [A]. 7th International Symposium on Superalloy 718 and Derivatives [C]. Pittsburgh: The Minerals, Metals & Materials Society, 2010: 737
|
[2] |
Niang A, Viguier B, Lacaze J. Some features of anisothermal solid-state transformations in alloy 718 [J]. Mater. Charact., 2010, 61: 525
|
[3] |
Texier D, Gómez A C, Pierret S, et al. Microstructural features controlling the variability in low-cycle fatigue properties of alloy Inconel 718DA at intermediate temperature [J]. Metall. Mater. Trans., 2016, 47A: 1096
|
[4] |
Liu J H, Vanderesse N, Stinville J C, et al. In-plane and out-of-plane deformation at the sub-grain scale in polycrystalline materials assessed by confocal microscopy [J]. Acta Mater., 2019, 169: 260
doi: 10.1016/j.actamat.2019.03.001
|
[5] |
Xie X S, Dong J X, Fu S H, et al. Research and development of γ′′ and γ′ strengthened Ni-Fe base superalloy GH4169 [J]. Acta Metall. Sin., 2010, 46: 1289
doi: DOI: 10.3724/SP.J.1037.2010.00436
|
[5] |
(谢锡善, 董建新, 付书红等. γ′′和γ′相强化的Ni-Fe基高温合金GH4169的研究与发展 [J]. 金属学报, 2010, 46: 1289)
doi: DOI: 10.3724/SP.J.1037.2010.00436
|
[6] |
Paulonis D F, Schirra J J. Alloy 718 at Pratt & Whitney-Historical perspective and future challenges [A]. 5th International Symposium on Superalloys 718, 625, 706, and Derivatives [C]. Pittsburgh: The Minerals, Metals & Materials Society, 2001: 13
|
[7] |
Schafrik R E, Ward D D, Groh J R. Application of alloy 718 in GE aircraft engines: Past, present and next five years [A]. 5th International Symposium on Superalloys 718, 625, 706, and Derivatives [C]. Pittsburgh: The Minerals, Metals & Materials Society, 2001: 1
|
[8] |
Trosch T, Strößner J, Völkl R, et al. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting [J]. Mater. Lett., 2016, 164: 428
|
[9] |
Praveen K V U, Singh V. Effect of heat treatment on Coffin-Manson relationship in LCF of superalloy IN718 [J]. Mater. Sci. Eng., 2008, A485: 352
|
[10] |
Xu J H, Huang Z W, Jiang L. Effect of heat treatment on low cycle fatigue of IN718 superalloy at the elevated temperatures [J]. Mater. Sci. Eng., 2017, A690: 137
|
[11] |
Slama C, Abdellaoui M. Structural characterization of the aged Inconel 718 [J]. J. Alloys Compd., 2000, 306: 277
doi: 10.1016/S0925-8388(00)00789-1
|
[12] |
Rao G A, Kumar M, Srinivas M, et al. Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718 [J]. Mater. Sci. Eng., 2003, A355: 114
|
[13] |
Jeong D H, Choi M J, Goto M, et al. Effect of service exposure on fatigue crack propagation of Inconel 718 turbine disc material at elevated temperatures [J]. Mater. Charact., 2014, 95: 232
|
[14] |
Yeratapally S R, Glavicic M G, Hardy M, et al. Microstructure based fatigue life prediction framework for polycrystalline nickel-base superalloys with emphasis on the role played by twin boundaries in crack initiation [J]. Acta Mater., 2016, 107: 152
|
[15] |
Krueger D D, Antolovich S D, van Stone R H. Effects of grain size and precipitate size on the fatigue crack growth behavior of alloy 718 at 427 ℃ [J]. Metall. Trans., 1987, 18A: 1431
|
[16] |
Xiao L, Chen D L, Chaturvedi M C. Effect of boron on fatigue crack growth behavior in superalloy IN 718 at RT and 650 ℃ [J]. Mater. Sci. Eng., 2006, A428: 1
|
[17] |
Niang A, Huez J, Lacaze J, et al. Characterizing precipitation defects in nickel based 718 alloy [J]. Mater. Sci. Forum, 2010, 636-637: 517
|
[18] |
Dehmas M, Lacaze J, Niang A, et al. TEM study of high-temperature precipitation of delta phase in Inconel 718 alloy [J]. Adv. Mater. Sci. Eng., 2011, 2011: 940634
|
[19] |
Jiang H, Dong J X, Zhang M C, et al. Stress relaxation mechanism for typical nickel-based superalloys under service condition [J]. Acta Metall. Sin., 2019, 55: 1211
|
[19] |
(江 河, 董建新, 张麦仓等. 服役条件下镍基高温合金应力松弛微观机制 [J]. 金属学报, 2019, 55: 1211)
|
[20] |
Liu Y H, Kang M D, Wu Y, et al. Effects of microporosity and precipitates on the cracking behavior in polycrystalline superalloy Inconel 718 [J]. Mater. Charact., 2017, 132: 175
|
[21] |
Sui S, Chen J, Fan E X, et al. The influence of Laves phases on the high-cycle fatigue behavior of laser additive manufactured Inconel 718 [J]. Mater. Sci. Eng., 2017, A695: 6
|
[22] |
Cao G X, Zhang M C, Dong J X, et al. Effects of Nb content variations on precipitates evolution of GH4169 ingots during their solidification and homogenization processes [J]. Rare Met. Mater. Eng., 2014, 43: 103
|
[22] |
(曹国鑫, 张麦仓, 董建新等. Nb含量对GH4169合金钢锭凝固及均匀化过程相演化规律的影响 [J]. 稀有金属材料与工程, 2014, 43: 103)
|
[23] |
Pattnaik S, Karunakar D B, Jha P K. Developments in investment casting process—A review [J]. J. Mater. Process. Technol., 2012, 212: 2332
|
[24] |
Sigl K M, Hardin R A, Stephens R I, et al. Fatigue of 8630 cast steel in the presence of porosity [J]. Int. J. Cast Met. Res., 2004, 17: 130
|
[25] |
Overfelt R A, Sahai V, Ko Y K, et al. Porosity in cast equiaxed alloy 718 [A]. Superalloys 718, 625, 706, and Various Derivatives [C]. Warrendale: The Minerals, Metals & Materials Society, 1994: 189
|
[26] |
Flemings M C. Solidification Processing [M]. Weinheim: Wiley, 2006: 19
|
[27] |
Wu Y, Li S M, Kang M D, et al. Slip and fracture behavior of δ-Ni3Nb plates in a polycrystalline nickel-based superalloy during fatigue [J]. Scr. Mater., 2019, 171: 36
|
[28] |
Hidalgo R, Esnaola J A, Llavori I, et al. Fatigue life estimation of cast aluminium alloys considering the effect of porosity on initiation and propagation phases [J]. Int. J. Fatigue, 2019, 125: 468
|
[29] |
Lamm M, Singer R F. The effect of casting conditions on the high-cycle fatigue properties of the single-crystal nickel-base superalloy PWA 1483 [J]. Metall. Mater. Trans., 2007, 38A: 1177
|
[30] |
Boehlert C J, Li H, Wang L, et al. Slip system characterization of Inconel 718: Using in-situ scanning electron microscopy [J]. Adv. Mater. Process., 2010, 168(11): 41
|
[31] |
Sui S, Chen J, Ming X L, et al. The failure mechanism of 50% laser additive manufactured Inconel 718 and the deformation behavior of Laves phases during a tensile process [J]. Int. J. Adv. Manuf. Technol., 2017, 91: 2733
doi: 10.1007/s00170-016-9901-9
|
[32] |
Liu Y H, Wu Y, Kang M D, et al. Fracture mechanisms induced by microporosity and precipitates in isothermal fatigue of polycrystalline nickel based superalloy [J]. Mater. Sci. Eng., 2018, A736: 438
|
[33] |
Umakoshi Y, Hagihara K, Nakano T. Operative slip systems and anomalous strengthening in Ni3Nb single crystals with the D0astructure [J]. Intermetallics, 2001, 9: 955
|
[34] |
Kelly P M, Ren H P, Qiu D, et al. Identifying close-packed planes in complex crystal structures [J]. Acta Mater., 2010, 58: 3091
|
[35] |
Zhang H Y, Zhang S H, Cheng M, et al. Deformation characteristics of δ phase in the delta-processed Inconel 718 alloy [J]. Mater. Charact., 2010, 61: 49
|
[36] |
Sugimura H, Kaneno Y, Takasugi T. Alloying behavior of Ni3M-type compounds with D0a structure [J]. Mater. Trans., 2011, 52: 663
|
[37] |
Hagihara K, Nakano T, Umakoshi Y. Plastic deformation behaviour and operative slip systems in Ni3Nb single crystals [J]. Acta Mater., 2000, 48: 1469
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|