Please wait a minute...
金属学报  2019, Vol. 55 Issue (1): 1-15    DOI: 10.11900/0412.1961.2018.00456
  本期目录 | 过刊浏览 |
多维度碳纳米相增强铝基复合材料研究进展
赵乃勤(), 刘兴海, 蒲博闻
天津大学材料科学与工程学院 天津 300350
Progress on Multi-Dimensional Carbon Nanomaterials Reinforced Aluminum Matrix Composites: A Review
Naiqin ZHAO(), Xinghai LIU, Bowen PU
School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
引用本文:

赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报, 2019, 55(1): 1-15.
Naiqin ZHAO, Xinghai LIU, Bowen PU. Progress on Multi-Dimensional Carbon Nanomaterials Reinforced Aluminum Matrix Composites: A Review[J]. Acta Metall Sin, 2019, 55(1): 1-15.

全文: PDF(9859 KB)   HTML
摘要: 

以铝基复合材料为代表的金属基复合材料,具有高的比强度、比模量及优异的导热、导电性能,在航空航天、汽车制造、机械电子及其它民用领域具有广泛的应用前景。近年来,碳纳米相作为复合材料的增强体凭借其优异的力学性能和物理性能以及自身结构特点,引起人们极大关注而成为铝基复合材料研究领域的新热点。本文从不同维度结构的碳纳米相(零维碳纳米洋葱、一维碳纳米管、二维石墨烯等)为增强相的角度,概述了这些碳纳米相增强铝基复合材料的制备方法及其在力学性能方面的研究进展,阐述了从单一相增强到多元多维度混杂增强的铝基复合材料在力学性能方面的优势,旨在阐明通过碳纳米相的结构设计和空间构筑实现高强韧性铝基复合材料的设计思路,并展望了高强韧轻金属基复合材料未来的研究趋势。

关键词 碳纳米材料铝基复合材料制备方法力学性能多维度    
Abstract

Metal matrix composites (MMCs), especially aluminum matrix composites (AMCs), are widely used in the applications of aerospace, automotive, mechatronics and other areas due to the advantages of high specific strength, high specific modulus, and excellent thermal and electrical conductivity. In recent years, carbon nanomaterials as the reinforcement of MMCs, have attracted great attention for their outstanding mechanical and functional properties. This review focuses on the progress on preparation methods and mechanical properties of different dimensional carbon nanomaterials (0-D carbon nano-onions, 1-D carbon nanotubes, 2-D graphene et al.) reinforced AMCs. The design ideas of aluminum matrix composites with high strength and toughness through the structural construction have been summarized ranging from single- to multi-dimensional hybrid reinforcements, and the future research trends of MMCs have been prospected.

Key wordscarbon nanomaterial    aluminum matrix composite    preparation method    mechanical property    multi-dimension
收稿日期: 2018-09-28     
ZTFLH:  TG146.2  
基金资助:国家自然基金重点项目Nos.51531004和51472177
作者简介:

作者简介 赵乃勤,女,1961年生,教授,博士

图1  不同制备方法获得的碳纳米洋葱(CNO)及碳纳米洋葱增强铝基(CNO/Al)复合材料的形貌、工艺路线与力学性能[13,14,16,17]
图2  碳纳米管/Al (CNT/Al)复合材料各类制备加工示意图[23,25,27,30~32]
图3  PVA改性后的Al粉通过浆料混合均匀负载CNT制备过程示意图、Al@PVA表面负载CNT吸附机制示意图、液相球磨分散CNT过程示意图及片状Al粉表面均匀负载碳纳米管的高倍SEM像[34,36]
图4  原位合成CNT-Al复合材料生长过程示意图及其形貌[39,40]
图5  氧化石墨烯-铝(GO-Al)复合材料的制备及形貌[63,65,66]
图6  原位合成Cu催化GN/Al复合材料及原位合成负载镍纳米颗粒的石墨烯纳米片(Ni-NPs@GNP)增强6061铝复合材料的工艺与形貌[67,68]
图7  传统单一维度CNP/Al复合材料强度-延伸率倒置关系曲线
图8  rGO-CNT/Al复合粉末制备过程示意图及其SEM像、工程应力-应变曲线比较,3D CNT-GN@Cu复合增强体原位制备过程示意图及其TEM像,粉末冶金模板法制备三维钢筋GN示意图(通过改变预制体形状获得螺丝形状三维钢筋GN)及其SEM像[102,113,114]
[1] Guo W H, Liu C, Sun X M, et al.Aligned carbon nanotube/polymer composite fibers with improved mechanical strength and electrical conductivity[J]. J. Mater. Chem., 2012, 22: 903
[2] Murakami K, Nishida N, Osamura K, et al.Aluminization of high purity iron and stainless steel by powder liquid coating[J]. Acta Mater., 2004, 52: 2173
[3] Tian F, He C N.Fabrication and growth mechanism of carbon nanospheres by chemical vapor deposition[J]. Mater. Chem. Phys., 2010, 123: 351
[4] Miki-Yoshid M, Castillo R, Ramos S, et al.High resolution electron microscopy studies in carbon soots[J]. Carbon, 1994, 32: 231
[5] Wang Z X, Yu L P, Zhang W, et al.Carbon spheres synthesized by ultrasonic treatment[J]. Phys. Lett., 2003, 307A: 249
[6] Ugarte D.Curling and closure of graphitic networks under electron-beam irradiation[J]. Nature, 1992, 359: 707
[7] Sun X M, Li Y D.Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angew. Chem., Int. Ed., 2004, 43: 597
[8] Miao J Y, Hwang D W, Chang C C, et al.Uniform carbon spheres of high purity prepared on kaolin by CCVD[J]. Diam. Relat. Mater., 2003, 12: 1368
[9] Robles Hernández F C, Calderon H A. Nanostructured Al/Al4C3 composites reinforced with graphite or fullerene and manufactured by mechanical milling and spark plasma sintering[J]. Mater. Chem. Phys., 2012, 132: 815
[10] Umemoto M, Masuyama K, Raviprasad K. Mechanical alloying of fullerene with metals [J]. Mater. Sci. Forum, 1997, 235-238: 47
[11] Harris P J F. Carbon Nanotubes and Related Structures [M]. Cambridge: Cambridge University Press, 1999: 1
[12] de Heer W A, Ugarte D. Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5 nm interstellar absorption feature[J]. Chem. Phys. Lett., 1993, 207: 480
[13] Hou J G, Li X, Wang H Q, et al.Cu-C60 interaction and nano-composite structures[J]. J. Phys. Chem. Solids, 2000, 61: 995
[14] Khalid F A, Beffort O, Klotz U E, et al.Study of microstructure and interfaces in an aluminium-C60 composite material[J]. Acta Mater., 2003, 51: 4575
[15] Watanabe H, Sugioka M, Fukusumi M, et al.Mechanical and damping properties of fullerene-dispersed AZ91 magnesium alloy composites processed by a powder metallurgy route[J]. Mater. Trans., 2006, 47: 999
[16] He C N, Zhao N Q, Du X W, et al.Low-temperature synthesis of carbon onions by chemical vapor deposition using a nickel catalyst supported on aluminum[J]. Scr. Mater., 2006, 54: 689
[17] Zhao R Y, Xu R, Fan G L, et al.Reinforcement with in-situ synthesized carbon nano-onions in aluminum composites fabricated by flake powder metallurgy[J]. J. Alloys Compd., 2015, 650: 217
[18] He C N, Zhao N Q, Shi C S, et al.Fabrication of nanocarbon composites using in situ chemical vapor deposition and their applications[J]. Adv. Mater., 2015, 27: 5422
[19] Oh S I, Lim J Y, Kim Y C, et al.Fabrication of carbon nanofiber reinforced aluminum alloy nanocomposites by a liquid process[J]. J. Alloys Compd., 2012, 542: 111
[20] Iijima S.Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56
[21] Golberg D, Bai X D, Mitome M, et al.Structural peculiarities of in situ deformation of a multi-walled BN nanotube inside a high-resolution analytical transmission electron microscope[J]. Acta Mater., 2007, 55: 1293
[22] Bakshi S R, Lahiri D, Agarwal A.Carbon nanotube reinforced metal matrix composites—A review[J]. Int. Mater. Rev., 2010, 55: 41
[23] So K P, Lee I H, Duong D L, et al.Improving the wettability of aluminum on carbon nanotubes[J]. Acta Mater., 2011, 59: 3313
[24] Liu Z Y, Xiao B L, Wang W G, et al.Modelling of carbon nanotube dispersion and strengthening mechanisms in Al matrix composites prepared by high energy ball milling-powder metallurgy method[J]. Composites, 2017, 94A: 189
[25] Lahiri D, Bakshi S R, Keshri A K, et al.Dual strengthening mechanisms induced by carbon nanotubes in roll bonded aluminum composites[J]. Mater. Sci. Eng., 2009, A523: 263
[26] Bakshi S R, Agarwal A.An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites[J]. Carbon, 2011, 49: 533
[27] Park J G, Keum D H, Lee Y H.Strengthening mechanisms in carbon nanotube-reinforced aluminum composites[J]. Carbon, 2015, 95: 690
[28] Zhou W W, Yamaguchi T, Kikuchi K, et al.Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites[J]. Acta Mater., 2017, 125: 369
[29] Park J G, Keum D H, Lee Y H.Strengthening mechanisms in carbon nanotube-reinforced aluminum composites[J]. Carbon, 2015, 95: 690
[30] Kwon H, Estili M, Takagi K, et al.Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites[J]. Carbon, 2009, 47: 570
[31] Zare H, Jahedi M, Toroghinejad M R, et al.Microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites synthesized via equal-channel angular pressing[J]. Mater. Sci. Eng., 2016, A670: 205
[32] Liu Z Y, Xiao B L, Wang W G, et al.Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing[J]. Carbon, 2012, 50: 1843
[33] Choi H J, Shin J H, Bae D H.The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites[J]. Composites, 2012, 43A: 1061
[34] Jiang L, Fan G L, Li Z Q, et al.An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder[J]. Carbon, 2011, 49: 1965
[35] Liu Z Y, Zhao K, Xiao B L, et al.Fabrication of CNT/Al composites with low damage to CNTs by a novel solution-assisted wet mixing combined with powder metallurgy processing[J]. Mater. Des., 2016, 97: 424
[36] Chen B, Li S F, Imai H, et al.An approach for homogeneous carbon nanotube dispersion in Al matrix composites[J]. Mater. Des., 2015, 72: 1
[37] Guo B S, Zhang X M, Cen X, et al.Enhanced mechanical properties of aluminum based composites reinforced by chemically oxidized carbon nanotubes[J]. Carbon, 2018, 139: 459
[38] Subrahmanyam J, Vijayakumar M.Self-propagating high-temperature synthesis[J]. J. Mater. Sci., 1992, 27: 6249
[39] He C N, Zhao N Q, Shi C S, et al.An Approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites[J]. Adv. Mater., 2007, 19: 1128
[40] Yang X D, Liu E Z, Shi C S, et al.Fabrication of carbon nanotube reinforced Al composites with well-balanced strength and ductility[J]. J. Alloys Compd., 2013, 563: 216
[41] Palermo V, Kinloch I A, Ligi S, et al.Nanoscale mechanics of graphene and graphene oxide in composites: A scientific and technological perspective[J]. Adv. Mater., 2016, 28: 6232
[42] Xue C, Bai H, Tao P F, et al.Analysis on thermal conductivity of graphite/Al composite by experimental and modeling study[J]. J. Mater. Eng. Perform., 2017, 26: 327
[43] Wang J W, Zhang X Z, Xue C, et al.Effects of Si coated on graphite surface on the thermal and mechanical properties of graphite/Al composites[J]. Acta Mater. Compos. Sin., 2017, 34: 836(王俊伟, 张现周, 薛晨 等. 石墨表面镀Si对石墨/Al复合材料热物理性能的影响 [J]. 复合材料学报, 2017, 34: 836)
[44] Wang C, Bai H, Xue C, et al.On the influence of carbide coating on the thermal conductivity and flexural strength of X (X=SiC, TiC) coated graphite/Al composites[J]. RSC Adv., 2016, 6: 107483
[45] Akhlaghi F, Pelaseyyed S A.Characterization of aluminum/graphite particulate composites synthesized using a novel method termed "in-situ powder metallurgy"[J]. Mater. Sci. Eng., 2004, A385: 258
[46] Novoselov K S, Geim A K, Morozov S V, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666
[47] Cao Y C, Guo M M.Graphene materials and its applications[J]. Petrochem. Technol., 2016, 45: 1149(曹宇臣, 郭鸣明. 石墨烯材料及其应用 [J]. 石油化工, 2016, 45: 1149)
[48] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442: 282
[49] Ramanathan T, Abdala A A, Stankovich S, et al.Functionalized graphene sheets for polymer nanocomposites[J]. Nat. Nanotechnol., 2008, 3: 327
[50] Liang J J, Xu Y F, Huang Y, et al.Infrared-triggered actuators from graphene-based nanocomposites[J]. J. Phys. Chem., 2009, 113C: 9921
[51] Ji F, Li Y L, Feng J M, et al.Electrochemical performance of graphene nanosheets and ceramic composites as anodes for lithium batteries[J]. J. Mater. Chem., 2009, 19: 9063
[52] Walker L S, Marotto V R, Rafiee M A, et al.Toughening in graphene ceramic composites[J]. ACS Nano, 2011, 5: 3182
[53] Fan Y C, Wang L J, Li J L, et al.Preparation and electrical properties of graphene nanosheet/Al2O3 composites[J]. Carbon, 2010, 48: 1743
[54] Choi H, Kim H, Hwang S, et al.Electrochemical electrodes of graphene-based carbon nanotubes grown by chemical vapor deposition[J]. Scr. Mater., 2011, 64: 601
[55] Chen C, Zhuo W T, Zheng W G, et al.Preparation and characterization of water-soluble graphene and highly conducting films[J]. J. Inorg. Mater., 2011, 26: 707
[56] Yuan X Y.Progress in preparation of graphene[J]. J. Inorg. Mater., 2011, 26: 561
[57] Wang L, Tian L H, Wei G D, et al.Epitaxial growth of graphene and their applications in devices[J]. J. Inorg. Mater., 2011, 26: 1009
[58] Bartolucci S F, Paras J, Rafiee M A, et al.Graphene-aluminum nanocomposites[J]. Mater. Sci. Eng., 2011, A528: 7933
[59] Li G, Xiong B W.Effects of graphene content on microstructures and tensile property of graphene-nanosheets/aluminum composites[J]. J. Alloys Compd., 2017, 697: 31
[60] Shao P Z, Yang W S, Zhang Q, et al.Microstructure and tensile properties of 5083 Al matrix composites reinforced with graphene oxide and graphene nanoplates prepared by pressure infiltration method[J]. Composites, 2018, 109A: 151
[61] Rashad M, Pan F S, Tang A T, et al.Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method[J]. Prog. Nat. Sci.: Mater. Int., 2014, 24: 101
[62] Yolshina L A, Muradymov R V, Korsun I V, et al.Novel aluminum-graphene and aluminum-graphite metallic composite materials: Synthesis and properties[J]. J. Alloys Compd., 2016, 663: 449
[63] Gao X, Yue H Y, Guo E J, et al.Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites[J]. Mater. Des., 2016, 94: 54
[64] Zhang Z W, Liu Z Y, Xiao B L, et al.High efficiency dispersal and strengthening of graphene reinforced aluminum alloy composites fabricated by powder metallurgy combined with friction stir processing[J]. Carbon, 2018, 135: 215
[65] Wang J Y, Li Z Q, Fan G L, et al.Reinforcement with graphene nanosheets in aluminum matrix composites[J]. Scr. Mater., 2012, 66: 594
[66] Li Z, Guo Q, Li Z Q, et al.Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure[J]. Nano Lett., 2015, 15: 8077
[67] Liu X H, Li J J, Sha J W, et al.In-situ synthesis of graphene nanosheets coated copper for preparing reinforced aluminum matrix composites[J]. Mater. Sci. Eng., 2018, A709: 65
[68] Liu G, Zhao N Q, Shi C S, et al.In-situ synthesis of graphene decorated with nickel nanoparticles for fabricating reinforced 6061Al matrix composites[J]. Mater. Sci. Eng., 2017, A699: 185
[69] Zhao D M, Li Z W, Liu L D, et al.Progress of preparation and application of graphene/carbon nanotube composite materials[J]. Acta Chim. Sin., 2014, 72: 185(赵冬梅, 李振伟, 刘领弟等. 石墨烯/碳纳米管复合材料的制备及应用进展[J]. 化学学报, 2014, 72: 185)
[70] Wang M Z, Tang M, Chen S L, et al.Graphene-armored aluminum foil with enhanced anticorrosion performance as current collectors for lithium-ion battery[J]. Adv. Mater., 2017, 29: 1703882
[71] Qi J L, Lin J H, Wang X, et al.Low resistance VFG-microporous hybrid Al-based electrodes for supercapacitors[J]. Nano Energy, 2016, 26: 657
[72] Kwon H, Park D H, Silvain J F, et al.Investigation of carbon nanotube reinforced aluminum matrix composite materials[J]. Compos. Sci. Technol., 2010, 70: 546
[73] Jiang L, Li Z Q, Fan G L, et al.Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes[J]. Scr. Mater., 2012, 66: 331
[74] Yoo S J, Han S H, Kim W J.Strength and strain hardening of aluminum matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes[J]. Scr. Mater., 2013, 68: 711
[75] Wei H, Li Z Q, Xiong D B, et al.Towards strong and stiff carbon nanotube-reinforced high-strength aluminum alloy composites through a microlaminated architecture design[J]. Scr. Mater., 2014, 75: 30
[76] Mansoor M, Shahid M.Carbon nanotube-reinforced aluminum composite produced by induction melting[J]. J. Appl. Res. Technol., 2016, 14: 215
[77] Meng X, Liu T, Shi C S, et al.Synergistic effect of CNTs reinforcement and precipitation hardening in in-situ CNTs/Al-Cu composites[J]. Mater. Sci. Eng., 2015, A633: 103
[78] Yan H, Qiu H X.Fabrication of carbon nanotube reinforced A356 nanocomposites[J]. J. Mater. Res., 2016, 31: 2277
[79] Chen B, Kondoh K, Imai H, et al.Simultaneously enhancing strength and ductility of carbon nanotube/aluminum composites by improving bonding conditions[J]. Scr. Mater., 2016, 113: 158
[80] He T B, He X L, Tang P J, et al.The use of cryogenic milling to prepare high performance Al2009 matrix composites with dispersive carbon nanotubes[J]. Mater. Des., 2017, 114: 373
[81] Xu R, Tan Z Q, Xiong D B, et al.Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling[J]. Composites, 2017, 96A: 57
[82] Zhao K, Liu Z Y, Xiao B L, et al.Origin of insignificant strengthening effect of CNTs in T6-treated CNT/6061Al composites[J]. Acta Metall. Sin.(Eng. Lett.), 2018, 31: 134
[83] Fadavi Boostani A, Tahamtan S, Jiang Z Y, et al.Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles[J]. Composites, 2015, 68A: 155
[84] Shin S E, Bae D H.Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene[J]. Composites, 2015, 78A: 42
[85] Fadavi Boostani A, Yazdani S, Taherzadeh Mousavian R, et al.Strengthening mechanisms of graphene sheets in aluminium matrix nanocomposites[J]. Mater. Des., 2015, 88: 983
[86] Shin S E, Choi H J, Shin J H, et al.Strengthening behavior of few-layered graphene/aluminum composites[J]. Carbon, 2015, 82: 143
[87] Zhang H P, Xu C, Xiao W L, et al.Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion[J]. Mater. Sci. Eng., 2016, A658: 8
[88] Sun Y H, Zhang C, Liu B C, et al.Reduced graphene oxide reinforced 7075 Al matrix composites: Powder synthesis and mechanical properties[J]. Metals, 2017, 7: 499
[89] Zhao M, Xiong D B, Tan Z Q, et al.Lateral size effect of graphene on mechanical properties of aluminum matrix nanolaminated composites[J]. Scr. Mater., 2017, 139: 44
[90] Mukherjee B, Kumar R, Islam A, et al.Evaluation of strength-ductility combination by in-situ tensile testing of graphene nano platelets reinforced shroud plasma sprayed nickel-aluminium coating[J]. J. Alloys Compd., 2018, 765: 1082
[91] Prashantha Kumar H G, Prabhakaran S, Anthony Xavior M, et al. Enhanced surface and mechanical properties of bioinspired nanolaminate graphene-aluminum alloy nanocomposites through laser shock processing for engineering applications[J]. Mater. Today, 2018, 16: 81
[92] Jiang Y Y, Tan Z Q, Xu R, et al.Tailoring the structure and mechanical properties of graphene nanosheet/aluminum composites by flake powder metallurgy via shift-speed ball milling[J]. Composites, 2018, 111A: 73
[93] Zhou W W, Fan Y C, Feng X P, et al.Creation of individual few-layer graphene incorporated in an aluminum matrix[J]. Composites, 2018, 112A: 168
[94] Yang W S, Zhao Q Q, Xin L, et al.Microstructure and mechanical properties of graphene nanoplates reinforced pure Al matrix composites prepared by pressure infiltration method[J]. J. Alloys Compd., 2018, 732: 748
[95] Dixit S, Mahata A, Mahapatra D R, et al.Multi-layer graphene reinforced aluminum—Manufacturing of high strength composite by friction stir alloying[J]. Composites, 2018, 136B: 63
[96] Jo I, Cho S, Kim H, et al.Titanium dioxide coated carbon nanofibers as a promising reinforcement in aluminum matrix composites fabricated by liquid pressing process[J]. Scr. Mater., 2016, 112: 87
[97] Romano M S, Li N, Antiohos D, et al.Carbon nanotube-reduced graphene oxide composites for thermal energy harvesting applications[J]. Adv. Mater., 2013, 25: 6602
[98] Zhang C, Ren L L, Wang X Y, et al.Graphene oxide-assisted dispersion of pristine multiwalled carbon nanotubes in aqueous media[J]. J. Phys. Chem., 2010, 114C: 11435
[99] Shin M K, Lee B, Kim S H, et al.Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes[J]. Nat. Commun., 2012, 3: 650
[100] Li W K, Dichiara A, Bai J B.Carbon nanotube-graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites[J]. Compos. Sci. Technol., 2013, 74: 221
[101] Rashad M, Pan F S, Tang A T, et al.Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium[J]. J. Alloys Compd., 2014, 603: 111
[102] Li Z, Fan G L, Guo Q, et al.Synergistic strengthening effect of graphene-carbon nanotube hybrid structure in aluminum matrix composites[J]. Carbon, 2015, 95: 419
[103] Nieto A, Dua R, Zhang C, et al.Three dimensional graphene foam/polymer hybrid as a high strength biocompatible scaffold[J]. Adv. Funct. Mater., 2015, 25: 3916
[104] Lin Y, Liu S Q, Liu L.A new approach to construct three dimensional segregated graphene structures in rubber composites for enhanced conductive, mechanical and barrier properties[J]. J. Mater. Chem., 2016, 4C: 2353
[105] Chen Z P, Ren W C, Gao L B, et al.Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nat. Mater., 2011, 10: 424
[106] Jia J J, Sun X Y, Lin X Y, et al.Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites[J]. ACS Nano, 2014, 8: 5774
[107] Chen Y K, Zhang X, Liu E Z, et al.Fabrication of in-situ grown graphene reinforced Cu matrix composites[J]. Sci. Rep., 2016, 6: 19363
[108] Wang X F, Chen Y C, Li B Y.Aligning 3D nanofibrous networks from self-assembled phenylalanine nanofibers[J]. RSC Adv., 2015, 5: 8022
[109] Zhang X, Shi C S, Liu E Z, et al.Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network[J]. Nanoscale, 2017, 9: 11929
[110] Yang M, Weng L, Zhu H X, et al.Simultaneously enhancing the strength, ductility and conductivity of copper matrix composites with graphene nanoribbons[J]. Carbon, 2017, 118: 250
[111] Kosynkin D V, Higginbotham A L, Sinitskii A, et al.Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature, 2009, 458: 872
[112] Jiao L Y, Zhang L, Wang X R, et al.Narrow graphene nanoribbons from carbon nanotubes[J]. Nature, 2009, 458: 877
[113] Zhang X, Shi C S, Liu E Z, et al.In-situ space-confined synthesis of well-dispersed three-dimensional graphene/carbon nanotube hybrid reinforced copper nanocomposites with balanced strength and ductility[J]. Composites, 2017, 103A: 178
[114] Sha J W, Salvatierra R V, Dong P, et al.Three-dimensional rebar graphene[J]. ACS Appl. Mater. Interfaces, 2017, 9: 7376
[115] Yan Z, Peng Z W, Casillas G, et al.Rebar graphene[J]. ACS Nano, 2014, 8: 5061
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.