|
|
碳/金属复合材料界面结构优化及界面作用机制的研究进展 |
范同祥( ), 刘悦, 杨昆明, 宋健, 张荻 |
上海交通大学材料科学与工程学院金属基复合材料国家重点实验室 上海 200240 |
|
Recent Progress on Interfacial Structure Optimization and Their Influencing Mechanism of Carbon Reinforced Metal Matrix Composites |
Tongxiang FAN( ), Yue LIU, Kunming YANG, Jian SONG, Di ZHANG |
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
引用本文:
范同祥, 刘悦, 杨昆明, 宋健, 张荻. 碳/金属复合材料界面结构优化及界面作用机制的研究进展[J]. 金属学报, 2019, 55(1): 16-32.
Tongxiang FAN,
Yue LIU,
Kunming YANG,
Jian SONG,
Di ZHANG.
Recent Progress on Interfacial Structure Optimization and Their Influencing Mechanism of Carbon Reinforced Metal Matrix Composites[J]. Acta Metall Sin, 2019, 55(1): 16-32.
[1] | Guo B S, Zhang X M, Cen X, et al.Enhanced mechanical properties of aluminum based composites reinforced by chemically oxidized carbon nanotubes[J]. Carbon, 2018, 139: 459 | [2] | Chang G, Sun F Y, Duan J J, et al.Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond[J]. Acta Mater., 2018, 160: 235 | [3] | Zhang H L, Wu J H, Zhang Y, et al.Mechanical properties of diamond/Al composites with Ti-coated diamond particles produced by gas-assisted pressure infiltration[J]. Mater. Sci. Eng., 2015, A626: 362 | [4] | Zhang X J, Song F, Wei Z P, et al.Microstructural and mechanical characterization of in-situ TiC/Ti titanium matrix composites fabricated by graphene/Ti sintering reaction[J]. Mater. Sci. Eng., 2017, A705: 153 | [5] | Huang Z X, Zheng Z, Zhao S, et al.Copper matrix composites reinforced by aligned carbon nanotubes: Mechanical and tribological properties[J]. Mater. Des., 2017, 133: 570 | [6] | Casati R, Fabrizi A, Timelli G, et al.Microstructural and mechanical properties of Al-based composites reinforced with in-situ and ex-situ Al2O3 nanoparticles[J]. Adv. Eng. Mater., 2015, 18: 550 | [7] | Claussen N, Beyer P, Janssen R, et al.Squeeze cast β-Si3N4-Al composites[J]. Adv. Eng. Mater., 2002, 4: 117 | [8] | Lin J X, Ran G, Lei P H, et al.Microstructure analysis of neutron absorber Al/B4C metal matrix composites[J]. Metals, 2017, 7: 567 | [9] | Banerjee A, Bernoulli D, Zhang H T, et al.Ultralarge elastic deformation of nanoscale diamond[J]. Science, 2018, 360: 300 | [10] | Baughman R H, Zakhidov A A, De Heer W A. Carbon nanotubes-the route toward applications[J]. Science, 2002, 297: 787 | [11] | Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442: 282 | [12] | Park M, Kim B H, Kim S, et al.Improved binding between copper and carbon nanotubes in a composite using oxygen-containing functional groups[J]. Carbon, 2011, 49: 811 | [13] | Kim K T, Cha S I, Gemming T, et al.The role of interfacial oxygen atoms in the enhanced mechanical properties of carbon-nanotube-reinforced metal matrix nanocomposites[J]. Small, 2010, 4: 1936 | [14] | Hwang J, Yoon T, Jin S H, et al.Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process[J]. Adv. Mater., 2013, 25: 6724 | [15] | Chu K, Liu Y P, Wang J, et al.Oxygen plasma treatment for improving graphene distribution and mechanical properties of graphene/copper composites[J]. Mater. Sci. Eng., 2018, A735: 398 | [16] | Yang M, Weng L, Zhu H X, et al.Simultaneously enhancing the strength, ductility and conductivity of copper matrix composites with graphene nanoribbons[J]. Carbon, 2017, 118: 250 | [17] | Kang P S, Lee I H, Duong D L, et al.Improving the wettability of aluminum on carbon nanotubes[J]. Acta Mater., 2011, 59: 3313 | [18] | Jiang L, Fan G L, Li Z Q, et al.An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder[J]. Carbon, 2011, 49: 1965 | [19] | Jiang L, Li Z Q, Fan G L, et al.Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes[J]. Scr. Mater., 2012, 66: 331 | [20] | Yuan Q H, Zhou G H, Liao L, et al.Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets[J]. Carbon, 2018, 127: 177 | [21] | Yuan Q H, Qiu Z Q, Zhou G H, et al.Interfacial design and strengthening mechanisms of AZ91 alloy reinforced with in-situ reduced graphene oxide[J]. Mater. Charact., 2018, 138: 215 | [22] | Hopkins P E, Baraket M, Barnat E V, et al.Manipulating thermal conductance at metal-graphene contacts via chemical functionalization[J]. Nano Lett., 2012, 12: 590 | [23] | Foley B M, Hernández S C, Duda J C, et al.Modifying surface energy of graphene via plasma-based chemical functionalization to tune thermal and electrical transport at metal interfaces[J]. Nano Lett., 2015, 15: 4876 | [24] | Jiang T, Zhang X Q, Vishwanath S, et al.Covalent bonding modulated graphene-metal interfacial thermal transport[J]. Nanoscale, 2016, 8: 10993 | [25] | Wozniak J, Cygan T, Petrus M, et al.Tribological performance of alumina matrix composites reinforced with nickel-coated graphene[J]. Ceram. Int., 2018, 44: 9728 | [26] | Luo H, Sui Y, Qi J, et al.Mechanical enhancement of copper matrix composites with homogeneously dispersed graphene modified by silver nanoparticles[J]. J. Alloys Compd., 2017, 729: 293 | [27] | Pan Y P, He X B, Ren S B, et al.Optimized thermal conductivity of diamond/Cu composite prepared with tungsten-copper-coated diamond particles by vacuum sintering technique[J]. Vacuum, 2018, 153: 74 | [28] | Zhao X Y, Tang J C, Yu F X, et al.Preparation of graphene nanoplatelets reinforcing copper matrix composites by electrochemical deposition[J]. J. Alloys Compd., 2018, 766: 266 | [29] | Tang Y X, Yang X M, Wang R R, et al.Enhancement of the mechanical properties of graphene-copper composites with graphene-nickel hybrids[J]. Mater. Sci. Eng., 2014, A599: 247 | [30] | Hao X, Wang X H, Zhou S M, et al.Microstructure and properties of silver matrix composites reinforced with Ag-doped graphene[J]. Mater. Chem. Phys., 2018, 215: 327 | [31] | Mai Y J, Chen F X, Lian W Q, et al.Preparation and tribological behavior of copper matrix composites reinforced with nickel nanoparticles anchored graphene nanosheets[J]. J. Alloys Compd., 2018, 756: 1 | [32] | Mu X N, Cai H N, Zhang H M, et al.Uniform dispersion and interface analysis of nickel coated graphene nanoflakes/ pure titanium matrix composites[J]. Carbon, 2018, 137: 146 | [33] | Zhang X, Shi C S, Liu E Z, et al.Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network[J]. Nanoscale, 2017, 9: 11929 | [34] | Liu G, Zhao N Q, Shi C S, et al.In-situ synthesis of graphene decorated with nickel nanoparticles for fabricating reinforced 6061Al matrix composites[J]. Mater. Sci. Eng., 2017, A699: 185 | [35] | Fu K, Zhang X, Shi C S, et al.An approach for fabricating Ni@graphene reinforced nickel matrix composites with enhanced mechanical properties[J]. Mater. Sci. Eng., 2018, A715: 108 | [36] | Liu X H, Li J J, Sha J W, et al.In-situ synthesis of graphene nanosheets coated copper for preparing reinforced aluminum matrix composites[J]. Mater. Sci. Eng., 2018, A709: 65 | [37] | Abyzov A M, Kidalov S V, Shakhov F M.High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix[J]. J. Mater. Sci., 2010, 46: 1424 | [38] | Chu K, Liu Z F, Jia C C, et al.Thermal conductivity of SPS consolidated Cu/diamond composites with Cr-coated diamond particles[J]. J. Alloys Compd., 2010, 490: 453 | [39] | Zhang Y, Zhang H L, Wu J H, et al.Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles[J]. Scr. Mater., 2011, 65: 1097 | [40] | Shen X Y, He X B, Ren S B, et al.Effect of molybdenum as interfacial element on the thermal conductivity of diamond/Cu composites[J]. J. Alloys Compd., 2012, 529: 134 | [41] | Wang H Y, Tian J.Thermal conductivity enhancement in Cu/diamond composites with surface-roughened diamonds[J]. Appl. Phys., 2014, 116A: 265 | [42] | Abyzov A M, Kruszewski M J, Ciupiński ?, et al.Diamond-tungsten based coating-copper composites with high thermal conductivity produced by pulse plasma sintering[J]. Mater. Des., 2015, 76: 97 | [43] | Che Q L, Zhang J J, Chen X K, et al.Spark plasma sintering of titanium-coated diamond and copper-titanium powder to enhance thermal conductivity of diamond/copper composites[J]. Mater. Sci. Semicond. Process., 2015, 33: 67 | [44] | Kang Q P, He X B, Ren S B, et al.Microstructure and thermal properties of copper-diamond composites with tungsten carbide coating on diamond particles[J]. Mater. Charact., 2015, 105: 18 | [45] | Ma S D, Zhao N Q, Shi C S, et al.Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites[J]. Appl. Surf. Sci., 2017, 402: 372 | [46] | Pan Y P, He X B, Ren S B, et al.High thermal conductivity of diamond/copper composites produced with Cu-ZrC double-layer coated diamond particles[J]. J. Mater. Sci., 2018, 53: 8978 | [47] | Sang J Q, Yang W L, Zhu J J, et al.Regulating interface adhesion and enhancing thermal conductivity of diamond/copper composites by ion beam bombardment and following surface metallization pretreatment[J]. J. Alloys Compd., 2018, 740: 1060 | [48] | Yang W S, Chen G Q, Wang P P, et al.Enhanced thermal conductivity in diamond/aluminum composites with tungsten coatings on diamond particles prepared by magnetron sputtering method[J]. J. Alloys Compd., 2017, 726: 623 | [49] | Che Z F, Wang Q X, Wang L H, et al.Interfacial structure evolution of Ti-coated diamond particle reinforced Al matrix composite produced by gas pressure infiltration[J]. Composites, 2017, 113B: 280 | [50] | Ma L, Zhang L, Zhao P Y, et al.A new design of composites for thermal management: Aluminium reinforced with continuous CVD diamond coated W spiral wires[J]. Mater. Des., 2016, 101: 109 | [51] | Ren S B, Shen X Y, Guo C Y, et al.Effect of coating on the microstructure and thermal conductivities of diamond-Cu composites prepared by powder metallurgy[J]. Compos. Sci. Technol., 2011, 71: 1550 | [52] | Kang Q P, He X B, Ren S B, et al.Preparation of high thermal conductivity copper-diamond composites using molybdenum carbide-coated diamond particles[J]. J. Mater. Sci., 2013, 48: 6133 | [53] | Wang L H, Li J W, Catalano M, et al.Enhanced thermal conductivity in Cu/diamond composites by tailoring the thickness of interfacial TiC layer[J]. Composites, 2018, 113A: 76 | [54] | Cho H J, Kim Y J, Erb U.Thermal conductivity of copper-diamond composite materials produced by electrodeposition and the effect of TiC coatings on diamond particles[J]. Composites, 2018, 155B: 197 | [55] | Li J W, Zhang H L, Zhang Y, et al.Microstructure and thermal conductivity of Cu/diamond composites with Ti-coated diamond particles produced by gas pressure infiltration[J]. J. Alloys Compd., 2015, 647: 941 | [56] | Wang L H, Li J W, Che Z F, et al.Combining Cr pre-coating and Cr alloying to improve the thermal conductivity of diamond particles reinforced Cu matrix composites[J]. J. Alloys Compd., 2018, 749: 1098 | [57] | Zhang C, Cai Z Y, Tang Y G, et al.Microstructure and thermal behavior of diamond/Cu composites: Effects of surface modification[J]. Dia. Rela. Mater., 2018, 86: 98 | [58] | Zhang H D, Zhang J J, Liu Y, et al.Unveiling the interfacial configuration in diamond/Cu composites by using statistical analysis of metallized diamond surface[J]. Scr. Mater., 2018, 152: 84 | [59] | Cho S, Kikuchi K, Kawasaki A, et al.Effective load transfer by a chromium carbide nanostructure in a multi-walled carbon nanotube/copper matrix composite[J]. Nanotechology, 2012, 23: 315705 | [60] | Xiong N, Bao R, Yi J H, et al.CNTs/Cu-Ti composites fabrication through the synergistic reinforcement of CNTs and in situ generated nano-TiC particles[J]. J. Alloys Compd., 2019, 770: 204 | [61] | Chu K, Wang F, Li Y B, et al.Interface structure and strengthening behavior of graphene/CuCr composites[J]. Carbon, 2018, 133: 127 | [62] | Chu K, Wang F, Wang X H, et al.Interface design of graphene/copper composites by matrix alloying with titanium[J]. Mater. Des., 2018, 144: 290 | [63] | Li J W, Wang X T, Qiao Y, et al.High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites[J]. Scr. Mater., 2015, 109: 72 | [64] | Chu K, Jia C C, Guo H, et al.On the thermal conductivity of Cu-Zr/diamond composites[J]. Mater. Des., 2013, 45: 36 | [65] | Pérez-Bustamante R, Pérez-Bustamante F, Estrada-Guel I, et al.Effect of milling time and CNT concentration on hardness of CNT/Al2024 composites produced by mechanical alloying[J]. Mater. Charact., 2013, 75: 13 | [66] | Zhang Z W, Liu Z Y, Xiao B L, et al.High efficiency dispersal and strengthening of graphene reinforced aluminum alloy composites fabricated by powder metallurgy combined with friction stir processing[J]. Carbon, 2018, 135: 215 | [67] | Dong L L, Xiao B, Liu Y, et al.Sintering effect on microstructural evolution and mechanical properties of spark plasma sintered Ti matrix composites reinforced by reduced graphene oxides[J]. Ceram. Int., 2018, 44: 17835 | [68] | Deng C F, Zhang X X, Wang D Z.Chemical stability of carbon nanotubes in the 2024Al matrix[J]. Mater. Lett., 2007, 61: 904 | [69] | Kwon H, Takamichi M, Kawasaki A, et al.Investigation of the interfacial phases formed between carbon nanotubes and aluminum in a bulk material[J]. Mater. Chem. Phy., 2013, 138: 787 | [70] | Liu X Q, Li C J, Eckert J, et al.Microstructure evolution and mechanical properties of carbon nanotubes reinforced Al matrix composites[J]. Mater. Charact., 2017, 133: 122 | [71] | Jiang L Y, Liu T T, Zhang C D, et al.Preparation and mechanical properties of CNTs-AlSi10Mg composite fabricated via selective laser melting[J]. Mater. Sci. Eng., 2018, A734: 171 | [72] | Zhou W W, Bang S, Kurita H, et al.Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites[J]. Carbon, 2016, 96: 919 | [73] | Zhou W W, Yamaguchi T, Kikuchi K, et al.Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites[J]. Acta Mater., 2017, 125: 369 | [74] | Chen B, Shen J, Ye X, et al.Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites[J]. Carbon, 2016, 114: 198 | [75] | Chen B, Imai H, Umeda J, et al.Effect of spark-plasma-sintering conditions on tensile properties of aluminum matrix composites reinforced with multiwalled carbon nanotubes (MWCNTs)[J]. JOM, 2017, 69: 669 | [76] | Li S F, Sun B, Imai H, et al.Powder metallurgy Ti-TiC metal matrix composites prepared by in situ reactive processing of Ti-VGCFs system[J]. Carbon, 2013, 61: 216 | [77] | Mu X N, Cai H N, Zhang H M, et al.Interface evolution and superior tensile properties of multi-layer graphene reinforced pure Ti matrix composite[J]. Mater. Des., 2018, 140: 431 | [78] | Chen Y K, Zhang X, Liu E Z, et al.Fabrication of in-situ grown graphene reinforced Cu matrix composites[J]. Sci. Rep., 2016, 6: 19363 | [79] | Chen Y K, Zhang X, Liu E Z, et al.Fabrication of three-dimensional graphene/Cu composite by in-situ CVD and its strengthening mechanism[J]. J. Alloys Compd., 2016, 688: 69 | [80] | Cao M, Xiong D B, Tan Z Q, et al.Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity[J]. Carbon, 2017, 117: 65 | [81] | González C, Vilatela J J, Molina-Aldareguía J M, et al. Structural composites for multifunctional applications: Current challenges and future trends[J]. Prog. Mater. Sci., 2017, 89: 194 | [82] | Li Z, Guo Q, Li Z Q, et al.Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure[J]. Nano Lett., 2015, 15: 8077 | [83] | Hwang B, Kim W, Kim J, et al.Role of graphene in reducing fatigue damage in Cu/Gr nanolayered composite[J]. Nano Lett., 2017, 17: 4740 | [84] | Liu X Y, Wang F C, Wu H A, et al.Strengthening metal nanolaminates under shock compression through dual effect of strong and weak graphene interface[J]. Appl. Phys. Lett., 2014, 104: 231901 | [85] | Kim Y, Lee J, Yeom M S, et al.Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites[J]. Nat. Commun., 2013, 4: 2114 | [86] | Feng S W, Guo Q, Li Z, et al.Strengthening and toughening mechanisms in graphene-Al nanolaminated composite micro-pillars[J]. Acta Mater., 2017, 125: 98 | [87] | Li Z, Zhao L, Guo Q, et al.Enhanced dislocation obstruction in nanolaminated graphene/Cu composite as revealed by stress relaxation experiments[J]. Scr. Mater., 2017, 131: 67 | [88] | Chang G, Duan J L, Wang L H, et al.Thermal boundary conductance of a new generation of high thermal conductivity metal matrix composites: A review[J]. Mater. Rev., 2017, 31(7): 72(常国, 段佳良, 王鲁华等. 新一代高导热金属基复合材料界面热导研究进展[J]. 材料导报, 2017, 31(7): 72) | [89] | Tan Z Q, Ji G, Addad A, et al.Tailoring interfacial bonding states of highly thermal performance diamond/Al composites: Spark plasma sintering vs. vacuum hot pressing[J]. Composites, 2016, 91A: 9 | [90] | Volz S G, Chen G.Molecular-dynamics simulation of thermal conductivity of silicon crystals[J]. Phys Rev, 2000, 61B: 2651 | [91] | Chaves F A, Jiménez D, Cummings A W, et al.Physical model of the contact resistivity of metal-graphene junctions[J]. J. Appl. Phys., 2014, 115: 164513 | [92] | Nagashio K, Nishimura T, Kita K, et al.Contact resistivity and current flow path at metal/graphene contact[J]. Appl. Phys. Lett., 2010, 97: 143514 | [93] | Nam Do V, Anh Le H.Transport characteristics of graphene-metal interfaces[J]. Appl. Phys. Lett., 2012, 101: 161605 | [94] | Liu H C, Teng X Y, Wu W B, et al.Effect of graphene addition on properties of Cu-based composites for electrical contacts[J]. Mater. Res. Expr., 2017, 4: 066506 | [95] | Yang P, You X, Yi J H, et al.Influence of dispersion state of carbon nanotubes on electrical conductivity of copper matrix composites[J]. J. Alloys Compd., 2018, 752: 376 | [96] | Bunch J S, Verbridge S S, Alden J S, et al.Impermeable atomic membranes from graphene sheets[J]. Nano Lett., 2008, 8: 2458 | [97] | Si S Y, Li W Q, Zhao X L, et al.Significant radiation tolerance and moderate reduction in thermal transport of a tungsten nanofilm by inserting monolayer graphene[J]. Adv. Mater., 2017, 29: 1604623 | [98] | So K P, Chen D, Kushima A, et al.Dispersion of carbon nanotubes in aluminum improves radiation resistance[J]. Nano Energy, 2016, 22: 319 | [99] | Kim Y, Baek J, Kim S, et al.Radiation resistant vanadium-graphene nanolayered composite[J]. Sci. Rep., 2016, 6: 24785 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|