Please wait a minute...
金属学报  2023, Vol. 59 Issue (4): 457-466    DOI: 10.11900/0412.1961.2022.00605
  综述 本期目录 | 过刊浏览 |
航天装备牵引下的铝基复合材料研究进展与展望
马宗义(), 肖伯律, 张峻凡, 朱士泽, 王东
中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand
MA Zongyi(), XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong
Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
Zongyi MA, Bolv XIAO, Junfan ZHANG, Shize ZHU, Dong WANG. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. Acta Metall Sin, 2023, 59(4): 457-466.

全文: PDF(1898 KB)   HTML
摘要: 

天问一号是我国第一个行星探测器,其核心祝融号火星车承担着星面巡视和探测重任,已圆满完成预定90个火星日的探测并进入拓展任务。火星车上使用了多种SiC颗粒增强铝基复合材料,分别满足承载结构、运动机构、探测器结构的轻量化、耐磨损、耐冲击、尺寸稳定等苛刻服役要求,用量刷新了我国航天器铝基复合材料占比记录。本文介绍了针对火星车需求的4种铝基复合材料的研发历程,尤其是性能仿真、材料成分设计与制备加工等。在此基础上,针对未来飞行器等先进装备更苛刻服役工况对材料性能的更高要求,对低成本、高效制备和快速响应的需求,介绍了基于材料基因工程思想与大科学装置的研发新模式,展望了铝基复合材料未来的发展方向。

关键词 铝基复合材料火星车制备加工材料基因工程大科学装置    
Abstract

Tianwen-1 is China's first planetary probe. Its core, the rover Zhurong, undertook the task of tour and survey, and had extended the mission over the designed 90-Martian-day period limit on Mars. The rover was equipped with various silicon-carbide-particle-reinforced aluminum matrix composites for its bearing structure, motion system, and detectors to meet design requirements, such as lightweight, wear resistance, impact resistance, and dimensional stability. The use of these composites has set a new record for the proportion of aluminum matrix composites used in Chinese spacecraft. This paper discusses the research and development process of the four types of aluminum matrix composites used for the rover Zhurong: property simulation, material design, preparation, and processing. Additionally, the paper introduces new research and development paradigms based on material genetic engineering and the use of synchrotron radiation or neutron scattering facilities. The future development of aluminum matrix composites for high-tech equipment is also discussed.

Key wordsaluminum matrix composite    Mars rover    preparation and processing    genetic engineering of material    large-scale scientific facility
收稿日期: 2022-11-28     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目(2022YFB3707400)
通讯作者: 马宗义,zyma@imr.ac.cn,主要从事金属基复合材料、特种焊接与增材制造研究
Corresponding author: MA Zongyi, professor, Tel: (024)83978908, E-mail: zyma@imr.ac.cn
作者简介: 马宗义,男,1963年生,研究员,博士
图1  典型铝基复合材料代表性体积单元(RVE)模型
图2  微米颗粒(M-AMC)及纳米颗粒铝基复合材料(N-AMC)的比强度和比模量[11~25]
图3  17%SiC/Al-1.2Mg-0.6Si复合材料在淬火后直接人工时效态和先自然时效1周后人工时效态的析出相形貌[24]
MaterialHeat treatmentYieldTensileElongationModulus
strengthstrength%GPa
MPaMPa
17%SiC/2009AlNatural aging3805507.098
17%SiC/6092AlArtificial aging4395136.0102
Natural aging27244511.0-
Natural aging and then artificial aging4205017.0-
Pre-aging and then natural aging25042511.0-
Pre-aging, natural aging and then artificial aging4355146.0-
表1  不同成分及时效工艺复合材料的性能对比
图4  粉末冶金法制备的高陶瓷含量铝基复合材料大尺寸坯锭
图5  原位中子衍射实验实验装置和衍射图样[51]
1 Zhang X X, Zhang Q, Zangmeister T, et al. A three-dimensional realistic microstructure model of particle-reinforced metal matrix composites [J]. Modell. Simul. Mater. Sci. Eng., 2014, 22: 035010
2 Peng P, Gao M Q, Guo E Y, et al. Deformation behavior and damage in B4Cp/6061Al composites: An actual 3D microstructure-based modeling [J]. Mater. Sci. Eng., 2020, A781: 139169
3 Zhang J F, Zhang X X, Liu Z Y, et al. A rigid body dynamics simulation enhanced representative volume element builder for CNT/Al composite [J]. Int. J. Mech. Mater. Des., 2022, 18: 407
doi: 10.1007/s10999-021-09587-1
4 Sheng P Y, Zhang J Z, Ji Z. An advanced 3D modeling method for concrete-like particle-reinforced composites with high volume fraction of randomly distributed particles [J]. Compos. Sci. Technol., 2016, 134: 26
doi: 10.1016/j.compscitech.2016.08.009
5 Zhang J, Ouyang Q B, Guo Q, et al. 3D Microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites [J]. Compos. Sci. Technol., 2016, 123: 1
doi: 10.1016/j.compscitech.2015.11.014
6 Chandra N, Li H, Shet C, et al. Some issues in the application of cohesive zone models for metal-ceramic interfaces [J]. Int. J. Solids Struct., 2002, 39: 2827
doi: 10.1016/S0020-7683(02)00149-X
7 Li X, Chen J. A highly efficient prediction of delamination migration in laminated composites using the extended cohesive damage model [J]. Compos. Struct., 2017, 160: 712
doi: 10.1016/j.compstruct.2016.10.098
8 Zhang J F, Zhang X X, Wang Q Z, et al. Simulations of deformation and damage processes of SiCp/Al composites during tension [J]. J. Mater. Sci. Technol., 2018, 34: 627
doi: 10.1016/j.jmst.2017.09.005
9 Zhang J F, Andrä H, Zhang X X, et al. An enhanced finite element model considering multi strengthening and damage mechanisms in particle reinforced metal matrix composites [J]. Compos. Struct., 2019, 226: 111281
doi: 10.1016/j.compstruct.2019.111281
10 Zhang J F, Zhang X X, Andrä H, et al. A fast numerical method of introducing the strengthening effect of residual stress and strain to tensile behavior of metal matrix composites [J]. J. Mater. Sci. Technol., 2021, 87: 167
doi: 10.1016/j.jmst.2021.01.079
11 Nie J F, Chen Y Y, Chen X, et al. Stiff, strong and ductile heterostructured aluminum composites reinforced with oriented nanoplatelets [J]. Scr. Mater., 2020, 189: 140
doi: 10.1016/j.scriptamat.2020.08.017
12 Deng C F, Zhang X X, Wang D Z, et al. Preparation and characterization of carbon nanotubes/aluminum matrix composites [J]. Mater. Lett., 2007, 61: 1725
doi: 10.1016/j.matlet.2006.07.119
13 Bi S, Li Z S, Sun H X, et al. Microstructure and mechanical properties of carbon nanotubes-reinforced 7055Al composites fabricated by high-energy ball milling and powder metallurgy processing [J]. Acta Metall. Sin., 2021, 57: 71
13 毕 胜, 李泽琛, 孙海霞 等. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能 [J]. 金属学报, 2021, 57: 71
14 Ma Y, Chen Z, Wang M L, et al. High cycle fatigue behavior of the in-situ TiB2/7050 composite [J]. Mater. Sci. Eng., 2015, A640: 350
15 Chen D, Wang M L, Zhang Y J, et al. Microstructure and mechanical properties of TiB2/2219 composites [J]. Mater. Res. Innovations, 2014, 18(suppl.4) : S4-514
16 Stein J, Lenczowski B, Anglaret E, et al. Influence of the concentration and nature of carbon nanotubes on the mechanical properties of AA5083 aluminium alloy matrix composites [J]. Carbon, 2014, 77: 44
doi: 10.1016/j.carbon.2014.05.001
17 Zheng Z, Zhang X X, Qian M F, et al. Ultra-high strength GNP/2024Al composite via thermomechanical treatment [J]. J. Mater. Sci. Technol., 2022, 108: 164
doi: 10.1016/j.jmst.2021.08.056
18 Zhang L J, Qiu F, Wang J G, et al. Microstructures and mechanical properties of the Al2014 composites reinforced with bimodal sized SiC particles [J]. Mater. Sci. Eng., 2015, A637: 70
19 Nie J H, Fan J Z, Zhang S M, et al. Tensile and fracture properties of 15 vol% SiCp/2009Al composites fabricated by hot isostatic pressing and hot extrusion processes [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 875
doi: 10.1007/s40195-014-0127-2
20 Fan J Z, Shi L K. Development and application of particulate reinforced aluminum matrix composites [J]. Aerosp. Mater. Technol., 2012, 42(1): 1
20 樊建中, 石力开. 颗粒增强铝基复合材料研究与应用发展 [J]. 宇航材料工艺, 2012, 42(1): 1
21 Aluminum Composites USADWA, Inc. 2009/SiC/25p aluminum MMC [E].
22 Zhu S Z, Ma G N, Wang D, et al. Suppressed negative influence of natural aging in SiCp/6092Al composites [J]. Mater. Sci. Eng., 2019, A767: 138422
23 Ma G N, Wang D, Liu Z Y, et al. An investigation on particle weakening in T6-treated SiC/Al-Zn-Mg-Cu composites [J]. Mater. Charact., 2019, 158: 109966
doi: 10.1016/j.matchar.2019.109966
24 Zhu S Z, Wang D, Xiao B L, et al. Effects of natural aging on precipitation behavior and hardening ability of peak artificially aged SiCp/Al-Mg-Si composites [J]. Composites, 2022, 236B: 109851
25 Nie J H, Fan J Z, Wei S H, et al. Research and application of powder metallurgy particle reinforced aluminum matrix composite used in aviation [J]. Aeronaut. Manuf. Technol., 2017, 60(16): 26
25 聂俊辉, 樊建中, 魏少华 等. 航空用粉末冶金颗粒增强铝基复合材料研制及应用 [J]. 航空制造技术, 2017, 60(16): 26
26 The Aluminum Association, Inc. International alloy designations and chemical composition limits for wrought aluminum and wrought aluminum alloys [R]. Arlington: The Aluminum Association, Inc., 2015
27 Zhang Q, Wang Q Z, Xiao B L, et al. Phases and elemental distributions in SiCp/Al-Cu-Mg composite fabricated by powder metallurgy [J]. Acta Metall. Sin., 2012, 48: 135
doi: 10.3724/SP.J.1037.2011.00472
27 张 琪, 王全兆, 肖伯律 等. 粉末冶金制备SiCp/2009Al复合材料的相组成和元素分布 [J]. 金属学报, 2012, 48: 135
28 Marioara C D, Andersen S J, Jansen J, et al. The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al-Mg-Si alloy [J]. Acta Mater., 2003, 51: 789
doi: 10.1016/S1359-6454(02)00470-6
29 Zandbergen M W, Xu Q, Cerezo A, et al. Study of precipitation in Al-Mg-Si alloys by atom probe tomography I. Microstructural changes as a function of ageing temperature [J]. Acta Mater., 2015, 101: 136
doi: 10.1016/j.actamat.2015.08.017
30 Pogatscher S, Antrekowitsch H, Leitner H, et al. Influence of the thermal route on the peak-aged microstructures in an Al-Mg-Si aluminum alloy [J]. Scr. Mater., 2013, 68: 158
doi: 10.1016/j.scriptamat.2012.10.006
31 Andersen S J, Marioara C D, Friis J, et al. Precipitates in aluminium alloys [J]. Adv. Phys., 2018, 3X: 1479984
32 Vissers R, Van Huis M A, Jansen J, et al. The crystal structure of the β′ phase in Al-Mg-Si alloys [J]. Acta Mater., 2007, 55: 3815
doi: 10.1016/j.actamat.2007.02.032
33 Ding L P, Hu H, Jia Z H, et al. The disordered structure of Q' and C phases in Al-Mg-Si-Cu alloy [J]. Scr. Mater., 2016, 118: 55
doi: 10.1016/j.scriptamat.2016.03.011
34 Zhu S Z, Wang D, Wang Q Z, et al. Influence of cu content on the negative effect of natural aging in SiC/Al-Mg-Si-Cu composites [J]. Acta Metall. Sin., 2021, 57: 928
34 朱士泽, 王 东, 王全兆 等. Cu含量对SiC/Al-Mg-Si-Cu复合材料自然时效负面效应的影响 [J]. 金属学报, 2021, 57: 928
doi: 10.11900/0412.1961.2020.00330
35 Zhu S Z, Wang D, Xiao B L, et al. Suppressed negative effects of natural aging by pre-aging in SiCp/6092Al composites [J]. Composites, 2021, 212B: 108730
36 Zhang X X, Ni D R, Xiao B L, et al. Determination of macroscopic and microscopic residual stresses in friction stir welded metal matrix composites via neutron diffraction [J]. Acta Mater., 2015, 87: 161
doi: 10.1016/j.actamat.2015.01.006
37 Luzin V, Spiridonov P, Spencer K, et al. Neutron diffraction study of macrostress and microstress in Al-Al2O3-based corrosion protection coating obtained by cold spray (dynamic metallization) [J]. J. Therm. Spray Technol., 2020, 29: 1437
doi: 10.1007/s11666-020-01077-8
38 Roy S, Gibmeier J, Kostov V, et al. Internal load transfer in a metal matrix composite with a three-dimensional interpenetrating structure [J]. Acta Mater., 2011, 59: 1424
doi: 10.1016/j.actamat.2010.11.004
39 Bouafia F, Serier B, Bouiadjra B A B. Finite element analysis of the thermal residual stresses of SiC particle reinforced aluminum composite [J]. Comput. Mater. Sci., 2012, 54: 195
doi: 10.1016/j.commatsci.2011.10.030
40 Cao D F, Duan Q F, Li S X, et al. Effects of thermal residual stresses and thermal-induced geometrically necessary dislocations on size-dependent strengthening of particle-reinforced MMCs [J]. Compos. Struct., 2018, 200: 290
doi: 10.1016/j.compstruct.2018.05.129
41 Zhang X X, Xiao B L, Andrä H, et al. Multiscale modeling of macroscopic and microscopic residual stresses in metal matrix composites using 3D realistic digital microstructure models [J]. Compos. Struct., 2016, 137: 18
doi: 10.1016/j.compstruct.2015.10.045
42 Zhang X, Wang S Q. Interfacial strengthening of graphene/aluminum composites through point defects: A first-principles study [J]. Nanomaterials, 2021, 11: 738
doi: 10.3390/nano11030738
43 Gxowa-Penxa Z, Daswa P, Modiba R, et al. Development and characterization of Al-Al3Ni-Sn metal matrix composite [J]. Mater. Chem. Phys., 2021, 259: 124027
doi: 10.1016/j.matchemphys.2020.124027
44 Dandekar C R, Shin Y C. Molecular dynamics based cohesive zone law for describing Al-SiC interface mechanics [J]. Composites, 2011, 42A: 355
45 Choi B K, Yoon G H, Lee S. Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading [J]. Composites, 2016, 91B: 119
46 Zhang J F, Zhang X X, Wang Q Z, et al. Simulation of anisotropic load transfer and stress distribution in SiCp/Al composites subjected to tensile loading [J]. Mech. Mater., 2018, 122: 96
doi: 10.1016/j.mechmat.2018.04.011
47 Zhang X X, Zheng Z, Gao Y, et al. Progress in high throughput fabrication and characterization of metal matrix composites [J]. Acta Metall. Sin., 2019, 55: 109
doi: 10.11900/0412.1961.2018.00307
47 张学习, 郑 忠, 高 莹 等. 金属基复合材料高通量制备及表征技术研究进展 [J]. 金属学报, 2019, 55: 109
doi: 10.11900/0412.1961.2018.00307
48 Dezecot S, Buffiere J Y, Koster A, et al. In situ 3D characterization of high temperature fatigue damage mechanisms in a cast aluminum alloy using synchrotron X-ray tomography [J]. Scr. Mater., 2016, 113: 254
doi: 10.1016/j.scriptamat.2015.11.017
49 Yokota M, Kusano T, Mori M, et al. In-situ 3D visualization of compression process for powder beds by synchrotron-radiation X-ray computed laminography [J]. Powder Technol., 2021, 380: 265
doi: 10.1016/j.powtec.2020.11.019
50 Shoji E, Isogai S, Suzuki R, et al. Neutron computed tomography of phase separation structures in solidified Cu-Co alloys and investigation of relationship between the structures and melt convection during solidification [J]. Scr. Mater., 2020, 175: 29
doi: 10.1016/j.scriptamat.2019.08.041
51 Zhang X X, Zhang J F, Liu Z Y, et al. Microscopic stresses in carbon nanotube reinforced aluminum matrix composites determined by in-situ neutron diffraction [J]. J. Mater. Sci. Technol., 2020, 54: 58
doi: 10.1016/j.jmst.2020.04.016
52 Huang M, Xu C, Fan G H, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite [J]. Acta Mater., 2018, 153: 235
doi: 10.1016/j.actamat.2018.05.005
[1] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[2] 王冠杰, 李开旗, 彭力宇, 张壹铭, 周健, 孙志梅. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用[J]. 金属学报, 2022, 58(1): 75-88.
[3] 谢建新, 宿彦京, 薛德祯, 姜雪, 付华栋, 黄海友. 机器学习在材料研发中的应用[J]. 金属学报, 2021, 57(11): 1343-1361.
[4] 毕胜, 李泽琛, 孙海霞, 宋保永, 刘振宇, 肖伯律, 马宗义. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能[J]. 金属学报, 2021, 57(1): 71-81.
[5] 宿彦京, 付华栋, 白洋, 姜雪, 谢建新. 中国材料基因工程研究进展[J]. 金属学报, 2020, 56(10): 1313-1323.
[6] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[7] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[8] 陶然, 赵玉涛, 陈刚, 怯喜周. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 160-170.
[9] 赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报, 2019, 55(1): 1-15.
[10] 邱丰, 佟昊天, 沈平, 丛晓霜, 王轶, 姜启川. 综述:SiC/Al界面反应与界面结构演变规律及机制[J]. 金属学报, 2019, 55(1): 87-100.
[11] 王晨, 王贝贝, 薛鹏, 王东, 倪丁瑞, 陈礼清, 肖伯律, 马宗义. SiCp/6092Al复合材料搅拌摩擦焊接头的疲劳行为研究[J]. 金属学报, 2019, 55(1): 149-159.
[12] 丁浩, 崔喜平, 许长寿, 李爱滨, 耿林, 范国华, 陈俊锋, 孟松鹤. 连续玄武岩纤维增强铝基层状复合材料的制备与力学特性[J]. 金属学报, 2018, 54(8): 1171-1178.
[13] 刘晓云,王文广,王东,肖伯律,倪丁瑞,陈礼清,马宗义. 片层石墨尺寸对片层石墨/Al复合材料的强度和热导率的影响[J]. 金属学报, 2017, 53(7): 869-878.
[14] 薛鹏, 张星星, 吴利辉, 马宗义. 搅拌摩擦焊接与加工研究进展*[J]. 金属学报, 2016, 52(10): 1222-1238.
[15] 卢柯. 梯度纳米结构材料[J]. 金属学报, 2015, 51(1): 1-10.