|
|
航天装备牵引下的铝基复合材料研究进展与展望 |
马宗义( ), 肖伯律, 张峻凡, 朱士泽, 王东 |
中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 |
|
Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand |
MA Zongyi( ), XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong |
Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
Zongyi MA,
Bolv XIAO,
Junfan ZHANG,
Shize ZHU,
Dong WANG.
Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. Acta Metall Sin, 2023, 59(4): 457-466.
1 |
Zhang X X, Zhang Q, Zangmeister T, et al. A three-dimensional realistic microstructure model of particle-reinforced metal matrix composites [J]. Modell. Simul. Mater. Sci. Eng., 2014, 22: 035010
|
2 |
Peng P, Gao M Q, Guo E Y, et al. Deformation behavior and damage in B4Cp/6061Al composites: An actual 3D microstructure-based modeling [J]. Mater. Sci. Eng., 2020, A781: 139169
|
3 |
Zhang J F, Zhang X X, Liu Z Y, et al. A rigid body dynamics simulation enhanced representative volume element builder for CNT/Al composite [J]. Int. J. Mech. Mater. Des., 2022, 18: 407
doi: 10.1007/s10999-021-09587-1
|
4 |
Sheng P Y, Zhang J Z, Ji Z. An advanced 3D modeling method for concrete-like particle-reinforced composites with high volume fraction of randomly distributed particles [J]. Compos. Sci. Technol., 2016, 134: 26
doi: 10.1016/j.compscitech.2016.08.009
|
5 |
Zhang J, Ouyang Q B, Guo Q, et al. 3D Microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites [J]. Compos. Sci. Technol., 2016, 123: 1
doi: 10.1016/j.compscitech.2015.11.014
|
6 |
Chandra N, Li H, Shet C, et al. Some issues in the application of cohesive zone models for metal-ceramic interfaces [J]. Int. J. Solids Struct., 2002, 39: 2827
doi: 10.1016/S0020-7683(02)00149-X
|
7 |
Li X, Chen J. A highly efficient prediction of delamination migration in laminated composites using the extended cohesive damage model [J]. Compos. Struct., 2017, 160: 712
doi: 10.1016/j.compstruct.2016.10.098
|
8 |
Zhang J F, Zhang X X, Wang Q Z, et al. Simulations of deformation and damage processes of SiCp/Al composites during tension [J]. J. Mater. Sci. Technol., 2018, 34: 627
doi: 10.1016/j.jmst.2017.09.005
|
9 |
Zhang J F, Andrä H, Zhang X X, et al. An enhanced finite element model considering multi strengthening and damage mechanisms in particle reinforced metal matrix composites [J]. Compos. Struct., 2019, 226: 111281
doi: 10.1016/j.compstruct.2019.111281
|
10 |
Zhang J F, Zhang X X, Andrä H, et al. A fast numerical method of introducing the strengthening effect of residual stress and strain to tensile behavior of metal matrix composites [J]. J. Mater. Sci. Technol., 2021, 87: 167
doi: 10.1016/j.jmst.2021.01.079
|
11 |
Nie J F, Chen Y Y, Chen X, et al. Stiff, strong and ductile heterostructured aluminum composites reinforced with oriented nanoplatelets [J]. Scr. Mater., 2020, 189: 140
doi: 10.1016/j.scriptamat.2020.08.017
|
12 |
Deng C F, Zhang X X, Wang D Z, et al. Preparation and characterization of carbon nanotubes/aluminum matrix composites [J]. Mater. Lett., 2007, 61: 1725
doi: 10.1016/j.matlet.2006.07.119
|
13 |
Bi S, Li Z S, Sun H X, et al. Microstructure and mechanical properties of carbon nanotubes-reinforced 7055Al composites fabricated by high-energy ball milling and powder metallurgy processing [J]. Acta Metall. Sin., 2021, 57: 71
|
13 |
毕 胜, 李泽琛, 孙海霞 等. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能 [J]. 金属学报, 2021, 57: 71
|
14 |
Ma Y, Chen Z, Wang M L, et al. High cycle fatigue behavior of the in-situ TiB2/7050 composite [J]. Mater. Sci. Eng., 2015, A640: 350
|
15 |
Chen D, Wang M L, Zhang Y J, et al. Microstructure and mechanical properties of TiB2/2219 composites [J]. Mater. Res. Innovations, 2014, 18(suppl.4) : S4-514
|
16 |
Stein J, Lenczowski B, Anglaret E, et al. Influence of the concentration and nature of carbon nanotubes on the mechanical properties of AA5083 aluminium alloy matrix composites [J]. Carbon, 2014, 77: 44
doi: 10.1016/j.carbon.2014.05.001
|
17 |
Zheng Z, Zhang X X, Qian M F, et al. Ultra-high strength GNP/2024Al composite via thermomechanical treatment [J]. J. Mater. Sci. Technol., 2022, 108: 164
doi: 10.1016/j.jmst.2021.08.056
|
18 |
Zhang L J, Qiu F, Wang J G, et al. Microstructures and mechanical properties of the Al2014 composites reinforced with bimodal sized SiC particles [J]. Mater. Sci. Eng., 2015, A637: 70
|
19 |
Nie J H, Fan J Z, Zhang S M, et al. Tensile and fracture properties of 15 vol% SiCp/2009Al composites fabricated by hot isostatic pressing and hot extrusion processes [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 875
doi: 10.1007/s40195-014-0127-2
|
20 |
Fan J Z, Shi L K. Development and application of particulate reinforced aluminum matrix composites [J]. Aerosp. Mater. Technol., 2012, 42(1): 1
|
20 |
樊建中, 石力开. 颗粒增强铝基复合材料研究与应用发展 [J]. 宇航材料工艺, 2012, 42(1): 1
|
21 |
Aluminum Composites USADWA, Inc. 2009/SiC/25p aluminum MMC [E].
|
22 |
Zhu S Z, Ma G N, Wang D, et al. Suppressed negative influence of natural aging in SiCp/6092Al composites [J]. Mater. Sci. Eng., 2019, A767: 138422
|
23 |
Ma G N, Wang D, Liu Z Y, et al. An investigation on particle weakening in T6-treated SiC/Al-Zn-Mg-Cu composites [J]. Mater. Charact., 2019, 158: 109966
doi: 10.1016/j.matchar.2019.109966
|
24 |
Zhu S Z, Wang D, Xiao B L, et al. Effects of natural aging on precipitation behavior and hardening ability of peak artificially aged SiCp/Al-Mg-Si composites [J]. Composites, 2022, 236B: 109851
|
25 |
Nie J H, Fan J Z, Wei S H, et al. Research and application of powder metallurgy particle reinforced aluminum matrix composite used in aviation [J]. Aeronaut. Manuf. Technol., 2017, 60(16): 26
|
25 |
聂俊辉, 樊建中, 魏少华 等. 航空用粉末冶金颗粒增强铝基复合材料研制及应用 [J]. 航空制造技术, 2017, 60(16): 26
|
26 |
The Aluminum Association, Inc. International alloy designations and chemical composition limits for wrought aluminum and wrought aluminum alloys [R]. Arlington: The Aluminum Association, Inc., 2015
|
27 |
Zhang Q, Wang Q Z, Xiao B L, et al. Phases and elemental distributions in SiCp/Al-Cu-Mg composite fabricated by powder metallurgy [J]. Acta Metall. Sin., 2012, 48: 135
doi: 10.3724/SP.J.1037.2011.00472
|
27 |
张 琪, 王全兆, 肖伯律 等. 粉末冶金制备SiCp/2009Al复合材料的相组成和元素分布 [J]. 金属学报, 2012, 48: 135
|
28 |
Marioara C D, Andersen S J, Jansen J, et al. The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al-Mg-Si alloy [J]. Acta Mater., 2003, 51: 789
doi: 10.1016/S1359-6454(02)00470-6
|
29 |
Zandbergen M W, Xu Q, Cerezo A, et al. Study of precipitation in Al-Mg-Si alloys by atom probe tomography I. Microstructural changes as a function of ageing temperature [J]. Acta Mater., 2015, 101: 136
doi: 10.1016/j.actamat.2015.08.017
|
30 |
Pogatscher S, Antrekowitsch H, Leitner H, et al. Influence of the thermal route on the peak-aged microstructures in an Al-Mg-Si aluminum alloy [J]. Scr. Mater., 2013, 68: 158
doi: 10.1016/j.scriptamat.2012.10.006
|
31 |
Andersen S J, Marioara C D, Friis J, et al. Precipitates in aluminium alloys [J]. Adv. Phys., 2018, 3X: 1479984
|
32 |
Vissers R, Van Huis M A, Jansen J, et al. The crystal structure of the β′ phase in Al-Mg-Si alloys [J]. Acta Mater., 2007, 55: 3815
doi: 10.1016/j.actamat.2007.02.032
|
33 |
Ding L P, Hu H, Jia Z H, et al. The disordered structure of Q' and C phases in Al-Mg-Si-Cu alloy [J]. Scr. Mater., 2016, 118: 55
doi: 10.1016/j.scriptamat.2016.03.011
|
34 |
Zhu S Z, Wang D, Wang Q Z, et al. Influence of cu content on the negative effect of natural aging in SiC/Al-Mg-Si-Cu composites [J]. Acta Metall. Sin., 2021, 57: 928
|
34 |
朱士泽, 王 东, 王全兆 等. Cu含量对SiC/Al-Mg-Si-Cu复合材料自然时效负面效应的影响 [J]. 金属学报, 2021, 57: 928
doi: 10.11900/0412.1961.2020.00330
|
35 |
Zhu S Z, Wang D, Xiao B L, et al. Suppressed negative effects of natural aging by pre-aging in SiCp/6092Al composites [J]. Composites, 2021, 212B: 108730
|
36 |
Zhang X X, Ni D R, Xiao B L, et al. Determination of macroscopic and microscopic residual stresses in friction stir welded metal matrix composites via neutron diffraction [J]. Acta Mater., 2015, 87: 161
doi: 10.1016/j.actamat.2015.01.006
|
37 |
Luzin V, Spiridonov P, Spencer K, et al. Neutron diffraction study of macrostress and microstress in Al-Al2O3-based corrosion protection coating obtained by cold spray (dynamic metallization) [J]. J. Therm. Spray Technol., 2020, 29: 1437
doi: 10.1007/s11666-020-01077-8
|
38 |
Roy S, Gibmeier J, Kostov V, et al. Internal load transfer in a metal matrix composite with a three-dimensional interpenetrating structure [J]. Acta Mater., 2011, 59: 1424
doi: 10.1016/j.actamat.2010.11.004
|
39 |
Bouafia F, Serier B, Bouiadjra B A B. Finite element analysis of the thermal residual stresses of SiC particle reinforced aluminum composite [J]. Comput. Mater. Sci., 2012, 54: 195
doi: 10.1016/j.commatsci.2011.10.030
|
40 |
Cao D F, Duan Q F, Li S X, et al. Effects of thermal residual stresses and thermal-induced geometrically necessary dislocations on size-dependent strengthening of particle-reinforced MMCs [J]. Compos. Struct., 2018, 200: 290
doi: 10.1016/j.compstruct.2018.05.129
|
41 |
Zhang X X, Xiao B L, Andrä H, et al. Multiscale modeling of macroscopic and microscopic residual stresses in metal matrix composites using 3D realistic digital microstructure models [J]. Compos. Struct., 2016, 137: 18
doi: 10.1016/j.compstruct.2015.10.045
|
42 |
Zhang X, Wang S Q. Interfacial strengthening of graphene/aluminum composites through point defects: A first-principles study [J]. Nanomaterials, 2021, 11: 738
doi: 10.3390/nano11030738
|
43 |
Gxowa-Penxa Z, Daswa P, Modiba R, et al. Development and characterization of Al-Al3Ni-Sn metal matrix composite [J]. Mater. Chem. Phys., 2021, 259: 124027
doi: 10.1016/j.matchemphys.2020.124027
|
44 |
Dandekar C R, Shin Y C. Molecular dynamics based cohesive zone law for describing Al-SiC interface mechanics [J]. Composites, 2011, 42A: 355
|
45 |
Choi B K, Yoon G H, Lee S. Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading [J]. Composites, 2016, 91B: 119
|
46 |
Zhang J F, Zhang X X, Wang Q Z, et al. Simulation of anisotropic load transfer and stress distribution in SiCp/Al composites subjected to tensile loading [J]. Mech. Mater., 2018, 122: 96
doi: 10.1016/j.mechmat.2018.04.011
|
47 |
Zhang X X, Zheng Z, Gao Y, et al. Progress in high throughput fabrication and characterization of metal matrix composites [J]. Acta Metall. Sin., 2019, 55: 109
doi: 10.11900/0412.1961.2018.00307
|
47 |
张学习, 郑 忠, 高 莹 等. 金属基复合材料高通量制备及表征技术研究进展 [J]. 金属学报, 2019, 55: 109
doi: 10.11900/0412.1961.2018.00307
|
48 |
Dezecot S, Buffiere J Y, Koster A, et al. In situ 3D characterization of high temperature fatigue damage mechanisms in a cast aluminum alloy using synchrotron X-ray tomography [J]. Scr. Mater., 2016, 113: 254
doi: 10.1016/j.scriptamat.2015.11.017
|
49 |
Yokota M, Kusano T, Mori M, et al. In-situ 3D visualization of compression process for powder beds by synchrotron-radiation X-ray computed laminography [J]. Powder Technol., 2021, 380: 265
doi: 10.1016/j.powtec.2020.11.019
|
50 |
Shoji E, Isogai S, Suzuki R, et al. Neutron computed tomography of phase separation structures in solidified Cu-Co alloys and investigation of relationship between the structures and melt convection during solidification [J]. Scr. Mater., 2020, 175: 29
doi: 10.1016/j.scriptamat.2019.08.041
|
51 |
Zhang X X, Zhang J F, Liu Z Y, et al. Microscopic stresses in carbon nanotube reinforced aluminum matrix composites determined by in-situ neutron diffraction [J]. J. Mater. Sci. Technol., 2020, 54: 58
doi: 10.1016/j.jmst.2020.04.016
|
52 |
Huang M, Xu C, Fan G H, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite [J]. Acta Mater., 2018, 153: 235
doi: 10.1016/j.actamat.2018.05.005
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|