Please wait a minute...
金属学报  2018, Vol. 54 Issue (5): 701-716    DOI: 10.11900/0412.1961.2018.00112
  金属材料的凝固专刊 本期目录 | 过刊浏览 |
非平衡凝固与固态相变的一体化研究
刘峰(), 张旭, 张玉兵
西北工业大学凝固技术国家重点实验室 西安 710072
Unified Analysis of Non-Equilibrium Solidification and Solid-State Phase Transformations
Feng LIU(), Xu ZHANG, Yubing ZHANG
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(12757 KB)   HTML
摘要: 

无论从相变,还是从材料热加工或材料设计而言,非平衡凝固与固态相变的一体化研究均具有深远的科学意义和极大的工程应用前景。本综述系统阐述了单相固溶体合金、共晶合金、包晶合金、多组元高温合金和铝合金的非平衡凝固及其包晶反应、块体转变、亚稳-稳定相转变、沉淀析出、再结晶和晶粒长大等固态转变行为。进而从非平衡凝固影响后续固态相变、非平衡凝固导致固态相变新机制、非平衡凝固与固态相变的一体化组织调控3个层次,探讨了非平衡凝固与随后固态相变的物理关联,实现了非平衡凝固和固态相变共同作用下的微观组织控制。本综述旨在为非平衡凝固效应的定量表征以及非平衡凝固与固态相变共同作用下的组织预测提供理论支撑。

关键词 金属非平衡凝固固态相变一体化    
Abstract

Considering both phase transition and material hot-working or material design, unified analysis of non-equilibrium solidification and solid-state phase transformations has profound significance of science and great prospect of engineering application. Here, non-equilibrium solidification and solid state transformation behavior, correlated with peritectic reaction, massive transformation, metastable-stable transformation, precipitation, recrystallization and grain growth, for single phase solid solution alloy, eutectic alloy, peritectic alloy, multi-component super alloy and aluminum alloy, have been systematically reviewed. Regarding further the influence of non-equilibrium solidification on subsequent solid-state transformations, the new transformation mechanism induced by non-equilibrium solidification and the integrated microstructure regulation, the physical correlation between non-equilibrium solidification and subsequent solid-state transformations were discussed, and eventually, the microstructure control under the joint action of non-equilibrium solidification and solid phase transformations was realized. This review is expected to provide theoretical support for quantitative characterization of non-equilibrium solidification effect and microstructure prediction under the joint action of non-equilibrium solidification and solid-state transformations.

Key wordsmetal    non-equilibrium solidification    solid-state phase transformation    unified analysis
收稿日期: 2018-03-26     
ZTFLH:  TG113.12  
基金资助:资助项目 国家重点研发计划项目Nos.2017YFB0305100、2017YFB0703001,国家自然科学基金项目Nos.51431008、51790481,中央高校基本科研业务费项目No.3102017jc01002和西北工业大学凝固技术国家重点实验室自主研究课题项目No.117-TZ-2015
作者简介:

作者简介 刘 峰,男,1974年生,教授

引用本文:

刘峰, 张旭, 张玉兵. 非平衡凝固与固态相变的一体化研究[J]. 金属学报, 2018, 54(5): 701-716.
Feng LIU, Xu ZHANG, Yubing ZHANG. Unified Analysis of Non-Equilibrium Solidification and Solid-State Phase Transformations. Acta Metall Sin, 2018, 54(5): 701-716.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00112      或      https://www.ams.org.cn/CN/Y2018/V54/I5/701

图1  过冷度ΔT<临界过冷度ΔT *和ΔT>ΔT *时Fe-4.33%Ni包晶合金凝固再辉曲线及其凝固组织[17]
图2  Fe-4.33%Ni包晶合金δ /γ转变TTT曲线[12]
图3  Ni-Si合金非平衡凝固对退火态组织中析出相形貌的影响[23]
图4  不同过冷度下Si原子在α-Ni固溶体中的溶解度,于973 K下退火时Ni3Si析出相长大速率随时效时间变化曲线及其尺寸随时效时间的变化曲线[23]
图5  不同冷速下A356合金凝固组织经固溶处理后共晶Si颗粒形貌[25]
图6  阶梯铜模浇铸获得不同冷速下凝固试样屈服强度随固溶和时效时间变化曲线[27]
图7  不同过冷度下Ni-1.5%B合金凝固组织在1173 K下退火处理时晶粒形貌演变[28]
图8  不同过冷度下Ni-1.5%B合金凝固组织在1173 K下退火处理晶粒尺寸的演变示意图[28]
图9  镍基DD3高温合金中应力累积与熔体初始过冷度之间的定量关系[30]
图10  深过冷(ΔT=225 K)快淬下得到的凝固组织的EBSD晶粒取向图、晶界形貌、{110}面极图和晶界的错配角分布[31]
图11  深过冷(ΔT=225 K)快淬下得到的凝固组织的TEM分析[31]
图12  深过冷(ΔT=225 K)快淬下得到的凝固组织经过1273 K退火30 min的EBSD晶粒取向图、晶界形貌、反极图和晶界的错配角分布[31]
图13  超过冷Fe83B17合金及不同热处理后的XRD谱(ΔT=445 K)[34]
图14  原子参量在相转变过程中自由能的变化[34]
图15  快速凝固结合凝固后热处理获得多级组织[27]
图16  快速凝固结合后热处理工艺获得多级组织对应的拉伸性能曲线[27]
图17  不同过冷度下DD3高温合金γ'析出相的形貌及其尺寸随过冷度变化曲线[30,38]
图18  不同过冷度下DD3合金的拉伸强度和塑性[38]
图19  非平衡凝固下获得ΔT=280 K的Fe40Ni40B20三元共晶合金的凝固组织、1173 K下60 h退火后获得多层组织及不同过冷度下单相层厚度随退火时间变化曲线[42]
图20  ΔT=70 K和ΔT=250 K下铸态和退火态Fe40Ni40B20合金的应力应变曲线[42]
图21  相变驱动力/能垒间互斥与材料的强度/塑性间互斥存在关联,加工中的大驱动力大能垒对应组织的大强度大塑性
[1] Kim Y J, Perepezko J H.The thermodynamics and competitive kinetics of metastable τ phase development in MnAl-base alloys[J]. Mater. Sci. Eng., 1993, A163: 127
[2] Vandyoussefi M, Kerr H W, Kurz W.Directional solidification and δ /γ solid state transformation in Fe-3%Ni alloy[J]. Acta Mater., 1997, 45: 4093
[3] Lima M, Kurz W.Massive transformation and absolute stability[J]. Metall. Mater. Trans., 2002, 33A: 2337
[4] Aziz M J.Model for solute redistribution during rapid solidification[J]. J. Appl. Phys., 1982, 53: 1158
[5] Lu K.Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties[J]. Mater. Sci. Eng., 1996, R16: 161
[6] Lu K.Synthesis of nanocrystalline materials from amorphous solids[J]. Adv. Mater., 1999, 11: 1127
[7] Liu F, Yang G C.Stress-induced recrystallization mechanism for grain refinement in highly undercooled superalloy[J]. J. Cryst. Growth, 2001, 231: 295
[8] Liu F, Zhao D W, Yang G C.Solidification of undercooled molten Ni-based alloys[J]. Metall. Mater. Trans., 2001, 32B: 449
[9] Yang C L, Yang G C, Liu F, et al.Metastable phase formation in eutectic solidification of highly undercooled Fe83B17 alloy melt[J]. Physica, 2006, 373B: 136
[10] Lu Y P, Yang G C, Liu F, et al.The transition of alpha-Ni phase morphology in highly undercooled eutectic Ni78.6Si21.4 alloy[J]. Europhys. Lett., 2006, 74: 281
[11] Chen Y Z, Yang G C, Liu F, et al.Microstructure evolution in undercooled Fe-7.5at%Ni alloys[J]. J. Cryst. Growth, 2005, 282: 490
[12] Chen Y Z, Yang G C, Liu F, et al.Microstructural transitions of metastable phase in undercooled Fe-7.5%Ni alloy[J]. J. Cryst Growth., 2006, 289: 1
[13] Yang C, Liu F, Yang G, et al.Stability of bulk metastable Fe83B17 eutectic alloy prepared by hypercooling method[J]. Appl. Phys., 2007, 86A: 231
[14] Liu F, Yang G C.Refinement of γ' precipitate with melt undercooling in Nickel-based superalloy[J]. Mater. Trans., 2001, 42: 1135
[15] Liu F, Kirchheim R.Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation[J]. J. Cryst. Growth, 2004, 264: 385
[16] Liu F, Yang G C, Kirchheim R.Overall effects of initial melt undercooling, solute segregation and grain boundary energy on the grain size of as-solidified Ni-based alloys[J]. J. Cryst. Growth, 2004, 264: 392
[17] Chen Y Z, Liu F, Yang G C, et al.Suppression of peritectic reaction in the undercooled peritectic Fe-Ni melts[J]. Scr. Mater., 2007, 57: 779
[18] Chen Y Z, Liu F, Yang G C, et al.δ /γ transformation in non-equilibrium solidified peritectic Fe-Ni alloy[J]. Sci. China, 2007, 50G: 421
[19] Hillert M.Solidification and Casting of Metals [M]. London: The Metals Society Press, 1979: 81
[20] Dhindaw B K, Antonsson T, Fredriksson H, et al.Characterization of the peritectic reaction in medium-alloy steel through microsegregation and heat-of-transformation studies[J]. Metall. Mater. Trans., 2004, 35A: 2869
[21] ?ad?rl? E.Investigation of the microhardness and the electrical resistivity of undercooled Ni-10 at.% Si alloys[J]. J. Non-Cryst. Solids, 2011, 357: 809
[22] Lu Y P, Liu F, Yang G C, et al.Grain refinement in solidification of highly undercooled eutectic Ni-Si alloy[J]. Mater. Lett., 2007, 61: 987
[23] Fan K, Liu F, Yang G C, et al.Precipitation in as-solidified undercooled Ni-Si hypoeutectic alloy: Effect of non-equilibrium solidification[J]. Mater. Sci. Eng., 2011, A528: 6844
[24] Wang H F, Liu F, Chen Z, et al.Analysis of non-equilibrium dendrite growth in a bulk undercooled alloy melt: Model and application[J]. Acta Mater., 2007, 55: 497
[25] Dang B, Liu C C, Liu F, et al.Effect of as-solidified microstructure on subsequent solution-treatment process for A356 Al alloy[J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 634
[26] Aaron H B, Kotler G R.Second phase dissolution[J]. Metall. Trans., 1971, 2: 393
[27] Dang B, Zhang X, Chen Y Z, et al.Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy[J]. Sci. Rep., 2016, 6: 30874
[28] Chen Z, Tang Y Y, Chen Q, et al.The interrelated effect of initial melt undercooling, solute trapping and solute drag on the grain growth mechanism of as-solidified Ni-B alloys[J]. J. Alloys Compd., 2014, 610: 561
[29] Furtkamp M, Gottstein G, Molodov D A, et al.Grain boundary migration in Fe-3.5% Si bicrystals with [001] tilt boundaries[J]. Acta Mater., 1998, 46: 4103
[30] Liu F, Yang G C.Rapid solidification of highly undercooled bulk liquid superalloy: Recent developments, future directions[J]. Int. Mater. Rev., 2006, 51: 145
[31] Xu X L, Liu F.Crystal growth due to recrystallization upon annealing rapid solidification microstructures of deeply undercooled single phase alloys quenched before recalescence[J]. Cryst. Growth Des., 2014, 14: 2110
[32] Chien C L, Musser D, Gyorgy E M, et al.Magnetic properties of amorphous FexB100-x (72≤x≤86) and crystalline Fe3B[J]. Phys. Rev., 1979, 20B: 283
[33] Inal O T, Keller L, Yost F G.High-temperature crystallization behaviour of amorphous Fe80B20[J]. J. Mater. Sci., 1980, 15: 1947
[34] Xu J F, Yang W, Liu F, et al.Effect of non-equilibrium solidification on subsequent solid-state transitions[J]. J. Xi'an Technol. Univ., 2009, 29: 41(许军峰, 杨伟, 刘峰等. 非平衡凝固对随后固态转变的影响[J]. 西安工业大学学报, 2009, 29: 41)
[35] Jiang J, Dézsi I, Gonser U, et al.A study of amorphous Fe79B21 alloy powders produced by chemical reduction[J]. J. Non-Cryst. Solids, 1990, 116: 247
[36] Burke J.The Kinetics of Phase Transformations in Metals [M]. Oxford: Pergamon Press, 1965
[37] Zhang H W, Wang J Q, Lu K.Kinetics of crystallization nucleation and growth in Al-rich metallic glass[J]. Acta Metall. Sin., 2002, 38: 609(张宏闻, 王建强, 卢柯. 非晶态铝合金晶化过程的形核与长大行为研究. 金属学报, 2002, 38: 609)
[38] Liu F, Yang G C.Effect of microstructure and γ' precipitate from undercooled DD3 superalloy on mechanical properties[J]. J. Mater. Sci., 2002, 37: 2713
[39] Liu F, Cai Y, Guo X F.Structure evolution in undercooled DD3 single crystal superalloy[J]. Mater. Sci. Eng., 2000, A291: 9
[40] Liu F, Guo X F, Yang G C.Recrystallization mechanism for the grain refinement in undercooled DD3 single-crystal superalloy[J]. J. Cryst. Growth, 2000, 219: 489
[41] Liebmann W K, Miller E A.Preparation, phase-boundary energies, and thermoelectric properties of InSb-Sb eutectic alloys with ordered microstructures[J]. J. Appl. Phys., 1963, 34: 2653
[42] Zhang K, Liu F, Gu B, et al.Recrystallization of as-solidified highly-undercooled Fe40Ni40B20 eutectic alloy: In situ formation of duplex structure[J]. J. Alloys Compd., 2013, 575: 444
[43] Willnecker R, Herlach D M, Feuerbacher B.Evidence of nonequilibrium processes in rapid solidification of undercooled metals[J]. Phys. Rev. Lett., 1989, 62: 2707
[44] Gu B, Liu F.Characterization of structural inhomogeneity in Al88Ce8Co4 metallic glass[J]. Acta Mater., 2016, 112: 94
[45] Song S J, Liu F.Kinetic modeling of solid-state partitioning phase transformation with simultaneous misfit accommodation[J]. Acta Mater., 2016, 108: 85
[46] Song S J, Liu F, Zhang Z H.Analysis of elastic-plastic accommodation due to volume misfit upon solid-state phase transformation[J]. Acta Mater., 2014, 64: 266
[47] Wang K, Shang S L, Wang Y, et al.Martensitic transition in Fe via Bain path at finite temperatures: A comprehensive first-principles study[J]. Acta Mater., 2018, 147: 261
[48] Hong M, Wang K, Chen Y Z, et al.A thermo-kinetic model for martensitic transformation kinetics in low-alloy steels[J]. J. Alloys Compd., 2015, 647: 763
[49] Huang L K, Lin W T, Lin B, et al.Exploring the concurrence of phase transition and grain growth in nanostructured alloy[J]. Acta Mater., 2016, 118: 306
[50] Lin B, Wang K, Liu F, et al.An intrinsic correlation between driving force and energy barrier upon grain boundary migration[J]. J. Mater. Sci. Technol., 2017, DOI: 10.1016/j.jmst.2017.11.002. (in press)
[51] Chen Z, Liu F, Yang X Q, et al.A thermokinetic description of nanoscale grain growth: Analysis of the activation energy effect[J]. Acta Mater., 2012, 60: 4833
[52] Gong M M,Castro R H R, Liu F. Modeling the final sintering stage of doped ceramics: Mutual interaction between grain growth and densification[J]. J. Mater. Sci., 2018, 53: 1680
[53] Liu F, Wang H F, Song S J, et al.Competitions correlated with nucleation and growth in non-equilibrium solidification and solid-state transformation[J]. Prog. Phys., 2012, 32: 57
[54] Kostorz G.Phase Transformations in Materials[M]. Weinheim: Wiley-VCH, 2001: 630
[55] Kelton K F.Crystal nucleation in liquids and glasses[J]. Solid State Phys., 1991, 45: 75
[56] Martyushev L M, Seleznev V D.Maximum entropy production principle in physics, chemistry and biology[J]. Phys. Rep., 2006, 426: 1
[1] 杨杰, 王雷. 核电站DMWJ中材料拘束的影响与优化[J]. 金属学报, 2020, 56(6): 840-848.
[2] 黄火根, 张鹏国, 张培, 王勤国. U-CoU-Fe基础体系非晶形成能力的比较[J]. 金属学报, 2020, 56(6): 849-854.
[3] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[4] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[5] 王祖敏,张安,陈媛媛,黄远,王江涌. 金属诱导晶化基础与应用研究进展[J]. 金属学报, 2020, 56(1): 66-82.
[6] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[7] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[8] 曹梦薇,蔡桃,张霞. Fe-BTC表面氨基化及对染料和重金属离子的吸附性能研究[J]. 金属学报, 2019, 55(7): 821-830.
[9] 陈斌,何杰,孙小钧,赵九洲,江鸿翔,张丽丽,郝红日. Fe-Cu-Pb合金液-液相分离及废旧电路板混合金属分级分离与回收[J]. 金属学报, 2019, 55(6): 751-761.
[10] 王慧远,李超,李志刚,徐进,韩洪江,管志平,宋家旺,王珵,马品奎. 纳米增强体强化轻合金复合材料制备及构型设计研究进展与展望[J]. 金属学报, 2019, 55(6): 683-691.
[11] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[12] 丁健翔,田无边,汪丹丹,张培根,陈坚,孙正明. Ag/Ti2AlC复合材料的电弧侵蚀及退化机理[J]. 金属学报, 2019, 55(5): 627-637.
[13] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[14] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[15] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.