Please wait a minute...
金属学报  2022, Vol. 58 Issue (9): 1093-1107    DOI: 10.11900/0412.1961.2022.00249
  综述 本期目录 | 过刊浏览 |
金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战
夏大海1,2(), 邓成满1,2, 陈子光3, 李天书4, 胡文彬1,2
1.天津大学 天津市材料复合与功能化重点实验室 天津 300350
2.天津大学 材料科学与工程学院 天津 300350
3.华中科技大学 航空航天学院 武汉 430074
4.Fontana Corrosion Center, The Ohio State University, Columbus, OH, 43210, USA
Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges
XIA Dahai1,2(), DENG Chengman1,2, CHEN Ziguang3, LI Tianshu4, HU Wenbin1,2
1.Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
2.School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
3.School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
4.Fontana Corrosion Center, The Ohio State University, Columbus, OH, 43210, USA
引用本文:

夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
Dahai XIA, Chengman DENG, Ziguang CHEN, Tianshu LI, Wenbin HU. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. Acta Metall Sin, 2022, 58(9): 1093-1107.

全文: PDF(2941 KB)   HTML
摘要: 

金属材料的局部腐蚀损伤是制约其服役寿命和服役安全性的关键因素。目前已有的局部腐蚀评价主要基于实验室腐蚀模拟实验和实际环境腐蚀暴露实验,往往面临实验复杂度高、周期较长及经费高等缺点。随着局部腐蚀电化学理论、局部腐蚀研究方法的不断完善,以及数值计算和相应模拟软件、编程语言的快速发展,局部腐蚀模拟仿真得以实现。基于经典连续力学(classical continuum mechanics,CCM)的数值模型,采用空间微分方程描述物质点之间的作用,在求解腐蚀损伤等不连续问题时会出现奇异性。近场动力学(peridynamics,PD)是一种基于非局部思想的理论,其采用时间微分-空间积分描述物质点之间的作用,突破了CCM理论在不连续问题上的瓶颈。结合基于PD理论的局部腐蚀损伤模型的相关理论和数值实现方法,本文综述了PD局部腐蚀模型在点蚀、缝隙腐蚀、晶间腐蚀、电偶腐蚀及应力腐蚀开裂中的应用,并分析其所面临的挑战并指出未来的研究方向。

关键词 金属材料局部腐蚀数值模拟近场动力学非局部理论    
Abstract

Localized corrosion degradation of metallic materials is a key factor that significantly impacts their lifetime and safety. Existing localized corrosion assessment methods for metallic materials are mainly based on corrosion simulation experiments in laboratory and corrosion exposure experiments in real environmental. However, these experiments are often complex, lengthy, and costly. Localized corrosion simulation can be achieved with the continuous improvement in the theory and measurement of localized corrosion, and the rapid development of numerical calculation, simulation software, and programing. Numerical models based on the classical continuum mechanics (CCM) apply a spatial differential equation to describe the interaction between material points, and singularity appears when solving discontinuous problems such as corrosion degradation. The peridynamics (PD) theory based on nonlocal applies time differential-spatial integration to describe the interaction between the material points and breaks through the bottleneck of the CCM theory on discontinuous problems. This paper reviews the state of the art of PD applied in localized corrosion modeling, including pitting corrosion, crevice corrosion, intergranular corrosion, galvanic corrosion, and stress corrosion cracking by combing with the relevant theories and numerical implementations of the localized corrosion degradation model based on the PD theory. Finally, the challenges and outlook of PD applied in corrosion modeling are discussed.

Key wordsmetallic material    localized corrosion    numerical simulation    peridynamics    nonlocal theory
收稿日期: 2022-05-19     
ZTFLH:  TG172  
基金资助:国家自然科学基金项目(52171077);国家自然科学基金项目(52031007)
作者简介: 夏大海,男,1984年生,副教授,博士
图1  经典连续力学中的相互作用[62]与近场动力学(PD)中的相互作用[48]
图2  基于扩散的一维PD腐蚀模型[60]
图3  相变机制和浓度致损模型[60]
图4  二维近场范围的均匀离散化[48]与面积修正[77]
图5  用于面积修正的PA-HHB算法流程图
图6  点蚀、缝隙腐蚀、晶间腐蚀、电偶腐蚀以及应力腐蚀开裂对应的PD二维初始条件和边界条件[60,70,72~74]
图7  PD腐蚀模型预测结果和实验测得极化曲线的对比结果及“域因子”(m)收敛性研究[60]
图8  用于研究异质材料点蚀损伤的2个示例以及例A和例B腐蚀20 s后的损伤演化图[60]
图9  三维模拟的初始和边界条件[71],304不锈钢点蚀生长的模拟结果[84]与实验结果对比图,以及模拟腐蚀83 s后的花边盖[71]
图10  盐膜的形成、原PD模型和改进的PD模型得到的腐蚀损伤的时间演化[86]
图11  PD缝隙腐蚀模型中的自催化效应[70]
图12  PD模拟2024-T3铝合金浸泡在NaCl溶液中发生晶间腐蚀的深度与时间的曲线,及与实验结果之间的比较[72]
图13  AE44镁合金/低碳钢偶对的电极表面的初始电流密度和AE44镁合金/6063铝合金偶对腐蚀深度的定量分析[73]
图14  压应力和弯曲应力下时间步长为1500的点蚀坑的裂纹扩展[91]
1 Xia D H, Deng C M, MacDonald D, et al. Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: A critical review [J]. J. Mater. Sci. Technol., 2022, 112: 151
doi: 10.1016/j.jmst.2021.11.004
2 Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 4: 1
doi: 10.1038/s41529-019-0105-2
3 Xia D H, Mao Y C, Zhu Y, et al. A novel approach used to study the corrosion susceptibility of metallic materials at a dynamic seawater/air interface [J]. Corros. Commun., 2022, 6: 62
doi: 10.1016/j.corcom.2022.03.001
4 Xia D H, Qin Z B, Song S Z, et al. Combating marine corrosion on engineered oxide surface by repelling, blocking and capturing Cl-: A mini review [J]. Corros. Commun., 2021, 2: 1
doi: 10.1016/j.corcom.2021.09.001
5 Alkire R. Editors' choice-perspective-mathematical modeling of electrochemical systems at multiple scales [J]. J. Electrochem. Soc., 2020, 167: 013517
6 Ji Y Y, Xu Y Z, Zhang B B, et al. Review of micro-scale and atomic-scale corrosion mechanisms of second phases in aluminum alloys [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 3205
doi: 10.1016/S1003-6326(21)65727-8
7 Weidner J W, Balbuena P B, Weber A Z, et al. Mathematical modeling of electrochemical systems at multiple scales in honor of Professor John Newman [J]. J. Electrochem. Soc., 2017, 164: Y13
doi: 10.1149/2.0731711jes
8 Li T S, Wu J, Frankel G S. Localized corrosion: Passive film breakdown vs. pit growth stability, Part VI: Pit dissolution kinetics of different alloys and a model for pitting and repassivation potentials [J]. Corros. Sci., 2021, 182: 109277
doi: 10.1016/j.corsci.2021.109277
9 Li T S, Frankel G S. Repassivation underneath salt film on stainless steel pits [J]. Corros. Sci., 2022, 203: 110353
doi: 10.1016/j.corsci.2022.110353
10 Frankel G S, Li T S, Scully J R. Perspective-localized corrosion: Passive film breakdown vs pit growth stability [J]. J. Electrochem. Soc., 2017, 164: C180
doi: 10.1149/2.1381704jes
11 Li T S, Scully J R, Frankel G S. Localized corrosion: Passive film breakdown vs pit growth stability: Part II. A model for critical pitting temperature [J]. J. Electrochem. Soc., 2018, 165: C484
doi: 10.1149/2.0591809jes
12 Li T S, Scully J R, Frankel G S. Localized corrosion: Passive film breakdown vs. pit growth stability: Part III. A unifying set of principal parameters and criteria for pit stabilization and salt film formation [J]. J. Electrochem. Soc., 2018, 165: C762
doi: 10.1149/2.0251811jes
13 Li T S, Scully J R, Frankel G S. Localized corrosion: passive film breakdown vs pit growth stability: Part V. Validation of a new framework for pit growth stability using one-dimensional artificial pit electrodes [J]. J. Electrochem. Soc., 2019, 166: C3341
doi: 10.1149/2.0431911jes
14 Li T S, Scully J R, Frankel G S. Localized corrosion: Passive film breakdown vs. pit growth stability: Part IV. The role of salt film in pit growth: A mathematical framework [J]. J. Electrochem. Soc., 2019, 166: C115
doi: 10.1149/2.0211906jes
15 Li T S, Perea D E, Schreiber D K, et al. Cryo-based structural characterization and growth model of salt film on metal [J]. Corros. Sci., 2020, 174: 108812
doi: 10.1016/j.corsci.2020.108812
16 Wang Y C, Song S Z, Wang J Q, et al. Correlation between passivity breakdown and composition of passive film formed on alloy 690 studied by sputtering XPS and FIB-HRTEM [J]. J. Electrochem. Soc., 2019, 166: C332
doi: 10.1149/2.1291912jes
17 Turnbull A, Wright L, Crocker L. New insight into the pit-to-crack transition from finite element analysis of the stress and strain distribution around a corrosion pit [J]. Corros. Sci., 2010, 52: 1492
doi: 10.1016/j.corsci.2009.12.004
18 Wenman M R, Trethewey K R, Jarman S E, et al. A finite-element computational model of chloride-induced transgranular stress-corrosion cracking of austenitic stainless steel [J]. Acta. Mater., 2008, 56: 4125
doi: 10.1016/j.actamat.2008.04.068
19 Vankeerberghen M. Will finite-element analysis find its way to the design against stress corrosion cracking? [J]. Environ.-Induced Crack. Mater., 2008, 1: 115
20 Paraskevoulakos C, Tanner D W J, Scott T B. Finite element modelling approach to investigate the degradation of intermediate level waste drums induced from interior metallic corrosion [J]. Eng. Struct., 2017, 147: 385
doi: 10.1016/j.engstruct.2017.06.012
21 Fallahnezhad K, Oskouei R H, Taylor M. Development of a fretting corrosion model for metallic interfaces using adaptive finite element analysis [J]. Finite. Elem. Anal. Des., 2018, 148: 38
doi: 10.1016/j.finel.2018.05.004
22 Qin G J, Cheng Y F, Zhang P. Finite element modeling of corrosion defect growth and failure pressure prediction of pipelines [J]. Int. J. Press. Vessels Pip., 2021, 194: 104509
doi: 10.1016/j.ijpvp.2021.104509
23 Fatoba O O, Leiva-Garcia R, Lishchuk S V, et al. Simulation of stress-assisted localised corrosion using a cellular automaton finite element approach [J]. Corros. Sci., 2018, 137: 83
doi: 10.1016/j.corsci.2018.03.029
24 Roy K, Lau H H, Fang Z Y, et al. Effects of corrosion on the strength of self-drilling screw connections in cold-formed steel structures-experiments and finite element modeling [J]. Structures, 2022, 36: 1080
doi: 10.1016/j.istruc.2021.12.052
25 Bailly-Salins L, Borrel L, Jiang W, et al. Modeling of high-temperature corrosion of zirconium alloys using the eXtended finite element method (X-FEM) [J]. Corros. Sci., 2021, 189: 109603
doi: 10.1016/j.corsci.2021.109603
26 Jasra Y, Singhal S, Upman R, et al. Finite element simulation of stress corrosion cracking in austenitic stainless steel using modified Lemaitre damage model [J]. Mater. Today: Proc., 2020, 26: 2314
27 Onishi Y, Takiyasu J, Amaya K, et al. Numerical method for time-dependent localized corrosion analysis with moving boundaries by combining the finite volume method and voxel method [J]. Corros. Sci., 2012, 63: 210
doi: 10.1016/j.corsci.2012.06.001
28 Sun W, Liu G C, Wang L D, et al. An arbitrary Lagrangian-Eulerian model for studying the influences of corrosion product deposition on bimetallic corrosion [J]. J. Solid State Electrochem., 2013, 17: 829
doi: 10.1007/s10008-012-1935-9
29 Sun W, Wang L D, Wu T T, et al. An arbitrary Lagrangian-Eulerian model for modelling the time-dependent evolution of crevice corrosion [J]. Corros. Sci., 2014, 78: 233
doi: 10.1016/j.corsci.2013.10.003
30 Duddu R. Numerical modeling of corrosion pit propagation using the combined extended finite element and level set method [J]. Comput. Mech., 2014, 54: 613
doi: 10.1007/s00466-014-1010-8
31 Duddu R, Kota N, Qidwai S M. An extended finite element method based approach for modeling crevice and pitting corrosion [J]. J. Appl. Mech., 2016, 83: 081003
32 Ansari T Q, Xiao Z H, Hu S Y, et al. Phase-field model of pitting corrosion kinetics in metallic materials [J]. npj Comput. Mater., 2018, 4: 38
doi: 10.1038/s41524-018-0089-4
33 Ansari T Q, Huang H T, Shi S Q. Phase field modeling for the morphological and microstructural evolution of metallic materials under environmental attack [J]. npj Comput. Mater., 2021, 7: 143
doi: 10.1038/s41524-021-00612-7
34 Lin C, Ruan H H, Shi S Q. Phase field study of mechanico-electrochemical corrosion [J]. Electrochim. Acta, 2019, 310: 240
doi: 10.1016/j.electacta.2019.04.076
35 Nguyen T T, Bolivar J, Réthoré J, et al. A phase field method for modeling stress corrosion crack propagation in a nickel base alloy [J]. Int. J. Solids Struct., 2017, 112: 65
doi: 10.1016/j.ijsolstr.2017.02.019
36 Ståhle P, Hansen E. Phase field modelling of stress corrosion [J]. Eng. Fail. Anal., 2015, 47: 241
doi: 10.1016/j.engfailanal.2014.07.025
37 Mai W J, Soghrati S, Buchheit R G. A phase field model for simulating the pitting corrosion [J]. Corros. Sci., 2016, 110: 157
doi: 10.1016/j.corsci.2016.04.001
38 Mai W J, Soghrati S. A phase field model for simulating the stress corrosion cracking initiated from pits [J]. Corros. Sci., 2017, 125: 87
doi: 10.1016/j.corsci.2017.06.006
39 Nguyen T T, Bolivar J, Shi Y, et al. A phase field method for modeling anodic dissolution induced stress corrosion crack propagation [J]. Corros. Sci., 2018, 132: 146
doi: 10.1016/j.corsci.2017.12.027
40 Xiao Z H, Hu S Y, Luo J L, et al. A quantitative phase-field model for crevice corrosion [J]. Comput. Mater. Sci., 2018, 149: 37
doi: 10.1016/j.commatsci.2018.03.011
41 Mai W J, Soghrati S. New phase field model for simulating galvanic and pitting corrosion processes [J]. Electrochim. Acta, 2018, 260: 290
doi: 10.1016/j.electacta.2017.12.086
42 Chadwick A F, Stewart J A, Enrique R A, et al. Numerical modeling of localized corrosion using phase-field and smoothed boundary methods [J]. J. Electrochem. Soc., 2018, 165: C633
doi: 10.1149/2.0701810jes
43 Tsuyuki C, Yamanaka A, Ogimoto Y. Phase-field modeling for pH-dependent general and pitting corrosion of iron [J]. Sci. Rep., 2018, 8: 12777
doi: 10.1038/s41598-018-31145-7 pmid: 30143681
44 Lishchuk S V, Akid R, Worden K, et al. A cellular automaton model for predicting intergranular corrosion [J]. Corros. Sci., 2011, 53: 2518
doi: 10.1016/j.corsci.2011.04.027
45 Di Caprio D, Vautrin-Ul C, Stafiej J, et al. Morphology of corroded surfaces: Contribution of cellular automaton modelling [J]. Corros. Sci., 2011, 53: 418
doi: 10.1016/j.corsci.2010.09.052
46 Córdoba-Torres P, Nogueira R P, De Miranda L, et al. Cellular automaton simulation of a simple corrosion mechanism: Mesoscopic heterogeneity versus macroscopic homogeneity [J]. Electrochim. Acta, 2001, 46: 2975
doi: 10.1016/S0013-4686(01)00524-2
47 Cui C J, Ma R J, Chen A R, et al. Experimental study and 3D cellular automata simulation of corrosion pits on Q345 steel surface under salt-spray environment [J]. Corros. Sci., 2019, 154: 80
doi: 10.1016/j.corsci.2019.03.011
48 Oterkus E, Oterkus S, Madenci E. Peridynamic Modeling, Numerical Techniques, and Applications [M]. Amsterdam: Elsevier, 2021: 186
49 Silling S A. Reformulation of elasticity theory for discontinuities and long-range forces [J]. J. Mech. Phys. Sol., 2000, 48: 175
doi: 10.1016/S0022-5096(99)00029-0
50 Rabczuk T, Ren H L. A peridynamics formulation for quasi-static fracture and contact in rock [J]. Eng. Geol., 2017, 225: 42
doi: 10.1016/j.enggeo.2017.05.001
51 Sanchez G, Aperador W, Cerón A. Corrosion grade classification: A machine learning approach [J]. Indian Chem. Eng., 2020, 62: 277
52 Hu W K, Ha Y D, Bobaru F. Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites [J]. Comput. Methods Appl. Mech. Eng., 2012, 217-220: 247
doi: 10.1016/j.cma.2012.01.016
53 Karpenko O, Oterkus S, Oterkus E. Peridynamic analysis to investigate the influence of microstructure and porosity on fatigue crack propagation in additively manufactured Ti6Al4V [J]. Eng. Fract. Mech., 2022, 261: 108212
doi: 10.1016/j.engfracmech.2021.108212
54 Bobaru F, Duangpanya M. The peridynamic formulation for transient heat conduction [J]. Int. J. Heat Mass Transf., 2010, 53: 4047
doi: 10.1016/j.ijheatmasstransfer.2010.05.024
55 Bobaru F, Duangpanya M. A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities [J]. J. Comput. Phys., 2012, 231: 2764
doi: 10.1016/j.jcp.2011.12.017
56 Wang L J, Xu J F, Wang J X. A peridynamic framework and simulation of non-Fourier and nonlocal heat conduction [J]. Int. J. Heat Mass Transf., 2018, 118: 1284
doi: 10.1016/j.ijheatmasstransfer.2017.11.074
57 Nikolaev P, Sedighi M, Jivkov A P, et al. Analysis of heat transfer and water flow with phase change in saturated porous media by bond-based peridynamics [J]. Int. J. Heat Mass Transf., 2022, 185: 122327
doi: 10.1016/j.ijheatmasstransfer.2021.122327
58 Askari E, Bobaru F, LEhoucq R B, et al. Peridynamics for multiscale materials modeling [J]. J. Phys.: Conf. Ser., 2008, 125: 012078
59 Gerstle W, Silling S, Read D, et al. Peridynamic simulation of electromigration [J]. Comput. Mater. Contin., 2008, 8: 75
60 Chen Z G, Bobaru F. Peridynamic modeling of pitting corrosion damage [J]. J. Mech. Phys. Sol., 2015, 78: 352
doi: 10.1016/j.jmps.2015.02.015
61 Jafarzadeh S, Chen Z G, Bobaru F. Computational modeling of pitting corrosion [J]. Corros. Rev., 2019, 37: 419
doi: 10.1515/corrrev-2019-0049
62 Madenci E, Oterkus E. Peridynamic Theory and Its Applications [M]. New York: Springer, 2014: 19
63 Silling S A, Epton M, Weckner O, et al. Peridynamic states and constitutive modeling [J]. J. Elasticity, 2007, 88: 151
doi: 10.1007/s10659-007-9125-1
64 Macek R W, Silling S A. Peridynamics via finite element analysis [J]. Finite Elem. Anal. Des., 2007, 43: 1169
doi: 10.1016/j.finel.2007.08.012
65 Chen Z G. Advances in corrosion damage modeling [J]. Chin. J. Sol. Mech., 2019, 40: 99
65 陈子光. 腐蚀损伤模型研究进展 [J]. 固体力学学报, 2019, 40: 99
66 Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd Ed., Beijing: Chemical Industry Press, 2008: 60
66 曹楚南. 腐蚀电化学原理 [M]. 第 3版, 北京: 化学工业出版社, 2008: 60
67 Scheiner S, Hellmich C. Stable pitting corrosion of stainless steel as diffusion-controlled dissolution process with a sharp moving electrode boundary [J]. Corros. Sci., 2007, 49: 319
doi: 10.1016/j.corsci.2006.03.019
68 Oterkus S, Madenci E, Agwai A. Peridynamic thermal diffusion [J]. J. Comput. Phys., 2014, 265: 71
doi: 10.1016/j.jcp.2014.01.027
69 Chen Z G, Bobaru F. Selecting the kernel in a peridynamic formulation: A study for transient heat diffusion [J]. Comput. Phys. Commun., 2015, 197: 51
doi: 10.1016/j.cpc.2015.08.006
70 Jafarzadeh S, Zhao J M, Shakouri M, et al. A peridynamic model for crevice corrosion damage [J]. Electrochim. Acta, 2022, 401: 139512
doi: 10.1016/j.electacta.2021.139512
71 Jafarzadeh S, Chen Z G, Zhao J M, et al. Pitting, lacy covers, and pit merger in stainless steel: 3D peridynamic models [J]. Corros. Sci., 2019, 150: 17
doi: 10.1016/j.corsci.2019.01.006
72 Jafarzadeh S, Chen Z G, Bobaru F. Peridynamic modeling of intergranular corrosion damage [J]. J. Electrochem. Soc., 2018, 165: C362
doi: 10.1149/2.0821807jes
73 Zhao J M, Jafarzadeh S, Rahmani M, et al. A peridynamic model for galvanic corrosion and fracture [J]. Electrochim. Acta, 2021, 391: 138968
doi: 10.1016/j.electacta.2021.138968
74 Jafarzadeh S, Chen Z G, Li S M, et al. A peridynamic mechano-chemical damage model for stress-assisted corrosion [J]. Electrochim. Acta, 2019, 323: 134795
doi: 10.1016/j.electacta.2019.134795
75 Lehoucq R B, Silling S A, Seleson P, et al. Peridynamics with LAMMPS: A user guide [R]. Albuquerque: Sandia National Laboratories, 2011
76 Silling S A, Askari E. A meshfree method based on the peridynamic model of solid mechanics [J]. Comput. Struct., 2005, 83: 1526
doi: 10.1016/j.compstruc.2004.11.026
77 Seleson P. Improved one-point quadrature algorithms for two-dimensional peridynamic models based on analytical calculations [J]. Comput. Methods Appl. Mech. Eng., 2014, 282: 184
doi: 10.1016/j.cma.2014.06.016
78 Liu J J, Lin Y Z, Li X Y. Numerical simulation for carbon steel flow-induced corrosion in high-velocity flow seawater [J]. Anti-Corros. Methods Mater., 2008, 55: 66
doi: 10.1108/00035590810859430
79 Bobaru F, Yang M J, Alves L F, et al. Convergence, adaptive refinement, and scaling in 1D peridynamics [J]. Int. J. Numer. Methods Eng., 2009, 77: 852
doi: 10.1002/nme.2439
80 Silling S A. Linearized theory of peridynamic states [J]. J. Elasticity, 2010, 99: 85
doi: 10.1007/s10659-009-9234-0
81 Bai X M, Tang J Q, Gong J M. Numerical modeling of 1D corrosion pit propagation under different overpotentials using peridynamic method [J]. J. Nanjing Tech Univ. (Nat. Sci. Ed.) 2017, 39(6): 91
81 白小敏, 唐建群, 巩建鸣. 不同过电位下一维点蚀的近场动力学数值模拟 [J]. 南京工业大学学报(自然科学版), 2017, 39(6): 91
82 Laycock N J, White S P, Noh J S, et al. Perforated covers for propagating pits [J]. J. Electrochem. Soc., 1998, 145: 1101
doi: 10.1149/1.1838423
83 Laycock N J, White S P. Computer simulation of single pit propagation in stainless steel under potentiostatic control [J]. J. Electrochem. Soc., 2001, 148: B264
doi: 10.1149/1.1376119
84 Almuaili F A. Characterisation off 3D pitting corrosion kinetics of stainless steel in chloride containing environments [D]. Manchester: University of Manchester, 2017
85 Gaudet G T, Mo W T, Hatton T A, et al. Mass transfer and electrochemical kinetic interactions in localized pitting corrosion [J]. AIChE J., 1986, 32: 949
doi: 10.1002/aic.690320605
86 Jafarzadeh S, Chen Z G, Bobaru F. Peridynamic modeling of repassivation in pitting corrosion of stainless steel [J]. Corrosion, 2018, 74: 393
doi: 10.5006/2615
87 Deshpande K B. Experimental investigation of galvanic corrosion: comparison between SVET and immersion techniques [J]. Corros. Sci., 2010, 52: 2819
doi: 10.1016/j.corsci.2010.04.023
88 De Meo D, Diyaroglu C, Zhu N, et al. Modelling of stress-corrosion cracking by using peridynamics [J]. Int. J. Hydrog. Energy, 2016, 41: 6593
doi: 10.1016/j.ijhydene.2016.02.154
89 De Meo D, Russo L, Oterkus E, et al. Peridynamics for predicting pit-to-crack transition [A]. 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference [C]. Grapevine: American Institute of Aeronautics and Astronautics, 2017: 0568
90 Li S M, Chen Z G, Wang F, et al. Analysis of corrosion-induced diffusion layer in ZK60A magnesium alloy [J]. J. Electrochem. Soc., 2016, 163: C784
doi: 10.1149/2.1001613jes
91 Shi C X, Gong Y, Yang Z G, et al. Peridynamic investigation of stress corrosion cracking in carbon steel pipes [J]. Eng. Fract. Mech., 2019, 219: 106604
doi: 10.1016/j.engfracmech.2019.106604
92 Chen Z G, Jafarzadeh S, Zhao J M, et al. A coupled mechano-chemical peridynamic model for pit-to-crack transition in stress-corrosion cracking [J]. J. Mech. Phys. Sol., 2021, 146: 104203
doi: 10.1016/j.jmps.2020.104203
93 Council N R. Research Opportunities in Corrosion Science and Engineering [M]. Washington: The National Academies Press, 2011: 120
94 Xia D H, Ji Y Y, Mao Y C, et al. Localized corrosion mechanism of 2024 aluminum alloy in a simulated dynamic seawater/air interface [J]. Acta Metall. Sin., 2022, DOI: 10.11900/0412.1961.2022.00196
94 夏大海, 计元元, 毛英畅 等. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制 [J]. 金属学报, 2022, DOI: 10.11900/0412.1961.2022.00196
95 Mao Y C, Zhu Y, Sun S K, et al. Localized corrosion of 5083 Al-alloy in simulated marine splash zone [J]. J. Chin. Soc. Corr. Prot., 2022, DOI: 10.11902/1005.4537.2022.162
95 毛英畅, 祝 钰, 孙圣凯 等. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为 [J]. 中国腐蚀与防护学报, 2022, DOI: 10.11902/1005.4537.2022.162
96 Liu W, Wang J. Environmental impact of material corrosion research progress in marine splash zone [J]. J. Chin. Soc. Corr. Prot., 2010, 30: 504
96 刘 薇, 王 佳. 海洋浪溅区环境对材料腐蚀行为影响的研究进展 [J]. 中国腐蚀与防护学报, 2010, 30: 504
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[3] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[4] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[6] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[7] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[8] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[9] 徐文策, 崔振铎, 朱胜利. 开孔多孔金属材料在电催化及生物医用领域的研究进展[J]. 金属学报, 2022, 58(12): 1527-1544.
[10] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[11] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[12] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[13] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[14] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[15] 温斌, 田永君. 纳米孪晶金属和纳米孪晶共价材料的力学行为[J]. 金属学报, 2021, 57(11): 1380-1395.