|
|
偏晶合金凝固过程研究进展 |
赵九洲( ), 江鸿翔 |
中国科学院金属研究所 沈阳 110016 |
|
Progress in the Solidification of Monotectic Alloys |
Jiuzhou ZHAO( ), Hongxiang JIANG |
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
赵九洲, 江鸿翔. 偏晶合金凝固过程研究进展[J]. 金属学报, 2018, 54(5): 682-700.
Jiuzhou ZHAO,
Hongxiang JIANG.
Progress in the Solidification of Monotectic Alloys[J]. Acta Metall Sin, 2018, 54(5): 682-700.
[1] | Zhao J Z, Ratke L, Feuerbacher B.Microstructure evolution of immiscible alloys during cooling through the miscibility gap[J]. Modelling Simul. Mater. Sci. Eng., 1998, 6: 123 | [2] | Ratke L, Diefenbach S.Liquid immiscible alloys[J]. Mater. Sci. Eng., 1995, R15: 263 | [3] | Zhao J Z, Ahmed T, Jiang H X, et al.Solidification of immiscible Alloys: A review[J]. Acta Metall. Sin.(Engl. Lett.), 2017, 30: 1 | [4] | Man T N, Zhang L, Xiang Z L, et al.Effects of adding Ti on microstructure and properties of Al-Bi immiscible alloy[J]. Acta Phys. Sin., 2018, 67: 036101(满田囡, 张林, 项兆龙等. 添加Ti对Al-Bi难混溶合金组织和性能的影响[J]. 物理学报, 2018, 67: 036101) | [5] | Gouthama, Rudrakshi G B, Ojha S N. Spray Forming and wear characteristics of liquid immiscible alloy[J]. J. Mater. Process. Technol, 2007, 189: 224 | [6] | Kang Z Q, Yang X, Feng G H, et al.Effect of Bi-content on microstructure evolution of Al-Bi monotectic alloy[J]. Chin. J. Mater. Res., 2016, 30: 603(康智强, 杨雪, 冯国会等. Bi含量对Al-Bi偏晶合金显微组织演变的影响[J]. 材料研究学报, 2016, 30: 603) | [7] | Song K X, Zhou Y J, Zhao P F, et al.Cu-10Sn-4Ni-3Pb alloy prepared by crystallization under pressure: An experimental study[J]. Acta Metall. Sin.(Engl. Lett.), 2013, 26: 199 | [8] | Li W S, Li Y M, Zhang J, et al.Progress in the research and application of silver-based electrical contact materials[J]. Mater. Rev., 2011, 25(6): 34(李文生, 李亚明, 张杰等. 银基电接触材料的应用研究及制备工艺[J]. 材料导报, 2011, 25(6): 34) | [9] | He J, Zhao J Z, Ratke L.Solidification microstructure and dynamics of metastable phase transformation in undercooled liquid Cu-Fe alloys[J]. Acta Mater., 2006, 54: 1749 | [10] | Shi R P, Wang Y, Wang C P, et al.Self-organization of core-shell and core-shell-corona structures in small liquid droplets[J]. Appl. Phys. Lett., 2011, 98: 204106 | [11] | Song X, Ning P, Wang C, et al.Research on the low temperature catalytic hydrolysis of COS and CS2 over walnut shell biochar modified by Fe-Cu mixed metal oxides and basic functional groups[J]. Chem. Eng. J., 2017, 314: 418 | [12] | Li X M, Kong Y, Zhou S J, et al.In situ incorporation of well-dispersed Cu-Fe oxides in the mesochannels of AMS and their utilization as catalysts towards the Fenton-like degradation of methylene blue[J]. J. Mater. Sci., 2017, 52: 1432 | [13] | Wang Y F, Gao H Y, Han Y F, et al.First-principles study on the solubility of iron in dilute Cu-Fe-X alloys[J]. J. Alloys Compd., 2017, 691: 992 | [14] | Terzieff P, Lück R.Magnetic investigations in liquid Al-In[J]. J. Alloys Compd., 2003, 360: 205 | [15] | Liu Y, Guo J J, Su Y Q, et al.Microstructures of rapidly solidified Al-In immiscible alloy[J]. Trans. Nonferrous Met. Soc. China, 2001, 11(1): 84 | [16] | Cui H B, Guo J J, Bi W S, et al.The evolution of unidirectional solidification microstructure of the Al-In monotectic alloys in high temperature gradient[J]. Acta Metall. Sin., 2004, 40: 1253(崔红保, 郭景杰, 毕维生等. 高温度梯度下Al-In偏晶合金定向凝固组织的演化规律[J]. 金属学报, 2004, 40: 1253) | [17] | Wang C P, Liu X J, Ohnuma I, et al.Formation of immiscible alloy powders with egg-type microstructure[J]. Science, 2002, 297: 990 | [18] | Wu Y Q, Li C J.Investigation of the phase separation of Al-Bi immiscible alloy melts by viscosity measurements[J]. J. Appl. Phys., 2012, 111: 073521 | [19] | Lu W Q, Zhang S G, Li J G.Segregation driven by collision and coagulation of minor droplets in Al-Bi immiscible alloys under aerodynamic levitation condition[J]. Mater. Lett., 2013, 107: 340 | [20] | Lu W Q, Zhang S G, Zhang W, et al.Direct observation of the segregation driven by bubble evolution and liquid phase separation in Al-10wt.%Bi immiscible alloy[J]. Scr. Mater., 2015, 102: 19 | [21] | Wang W L, Li Z Q, Wei B.Macrosegregation pattern and microstructure feature of ternary Fe-Sn-Si immiscible alloy solidified under free fall condition[J]. Acta Mater., 2011, 59: 5482 | [22] | Lu Y, Wang C P, Gao Y P, et al.Microstructure map for self-organized phase separation during film deposition[J]. Phys. Rev. Lett., 2012, 109: 086101 | [23] | Jiang H X.Study of the continuous solidification of monotectic alloys under the effect of electric current [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2014(江鸿翔. 电流作用下偏晶合金连续凝固过程研究 [D]. 沈阳: 中国科学院金属研究所, 2014) | [24] | Lacy L L, Otto G. The behavior of immiscible liquids in space [A]. Thermophysics and Heat Transfer Conference [C]. Bosto: AIAA, 1974: No.74-668 | [25] | Ahlborn H, Loehberg K. Aluminium-indium-experiment SOLUOG-A sounding rocket experiment on immiscible alloys [A]. 17th Aerospace Sciences Meeting [C]. New orieans: AIAA, 1979: No.79-0172 | [26] | Potard C. Directional solidification of Al-In alloys at microgravity-results of basic preparatory investigations [A]. 17th Aerospace Sciences Meeting [C]. New orieans: AIAA, 1979: No.79-1012 | [27] | Carlberg T, Fredriksson H.The influence of microgravity on the solidification of Zn-Bi immiscible alloys[J]. Metall. Trans., 1980, 11A: 1665 | [28] | Fujii H, Kimura T, Kitaguchi H, et al.Fabrication of uniform Al-Pb-Bi monotectic alloys under microgravity utilizing the space shuttle: Microstructure and superconducting properties[J]. J. Mater. Sci., 1995, 30: 3429 | [29] | Lin L Y.Proceedings of the First Chinese Symposium on Microgravity Science and Space Experiments [M]. Beijing: China Science and Technology Press, 1987: 71(林兰英. 中国微重力科学与空间实验 [M]. 北京: 中国科学技术出版社, 1987: 71) | [30] | Huang Q, Luo X H, Li Y Y.An alloy solidification experiment conducted on Shenzhou spacecraft[J]. Adv. Space Res., 2005, 36: 86 | [31] | Huang Z.Microstructural feature in metallic alloy solidified under microgravity[J]. Scr. Metall. Mater., 1991, 25: 149 | [32] | Kneissl A, Fischmeister H.Particle coarsening in immiscible zinc-lead alloys under microgravity [A]. 5th European Symposium on Material Science under Microgravity. Results of Spacelab 1[C]. Noordwijk: ESA Scientific & Technical Publications Branch, 1984: 63 | [33] | Walter H U.Preparation of dispersion alloys-component separation during cooling and solidification of dispersions of immiscible alloys [A]. Effect of Gravity on the Solidification of Immiscible Alloys[C]. Sweden: ESA, 1984: 47 | [34] | Gelles S H, Worth A J M. Microgravity studies in the liquid-phase immiscible system: Aluminum-indium[J]. AIAA J., 1978, 16: 431 | [35] | Zhao J Z.Separation mechanism of liquid phases and solidification behavior of Zn-Pb monotectic alloy [D]. Harbin: Harbin Institute of Technology, 1994(赵九洲. Zn-Pb偏晶合金液相分离机制及凝固行为 [D]. 哈尔滨: 哈尔滨工业大学, 1994) | [36] | Jia J, Zhao J Z, Zhang J H, et al.The solidification of immiscible alloy in orthogonal electromagnetic field[J]. Chin. J. Mech. Eng., 1991, 4: 90 | [37] | Ratke L, Uffelmann D.Coarsening processes in liquid dispersions[J]. Mater. Sci. Forum, 1991, 77: 69 | [38] | Liu N, Liu F, Chen Z, et al.Liquid-phase separation in rapid solidification of undercooled Fe-Co-Cu melts[J]. J. Mater. Sci. Technol., 2012, 28: 622 | [39] | Dai R R, Zhang S G, Guo X, et al.Formation of core-type microstructure in Al-Bi monotectic alloys[J]. Mater. Lett., 2011, 65: 322 | [40] | Wang W L, Wu Y H, Li L H, et al.Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy[J]. Sci. Rep., 2015, 5: 16335 | [41] | Schaffer P L, Mathiesen R H, Arnberg L.L2 droplet interaction with α-Al during solidification of hypermonotectic Al-8wt.% Bi alloys[J]. Acta Mater., 2009, 57: 2887 | [42] | Osório W R, Freitas E S, Garcia A.EIS and potentiodynamic polarization studies on immiscible monotectic Al-In alloys[J]. Electrochim. Acta, 2013, 102: 436 | [43] | Shi R P, Wang C P, Wheeler D, et al.Formation mechanisms of self-organized core/shell and core/shell/corona microstructures in liquid droplets of immiscible alloys[J]. Acta Mater., 2013, 61: 1229 | [44] | Luo S B, Wang W L, Chang J, et al.A comparative study of dendritic growth within undercooled liquid pure Fe and Fe50Cu50 alloy[J]. Acta Mater., 2014, 69: 355 | [45] | Raghavan R, Harzer T P, Chawla V, et al.Comparing small scale plasticity of copper-chromium nanolayered and alloyed thin films at elevated temperatures[J]. Acta Mater., 2015, 93: 175 | [46] | Liu E Y, Chen T J, Bai Y P.Effects of pouring techniques on the microstructure of Al-Pb bearing materials synthesized by sloping plate method[J]. Foundry Technol., 2010, 31: 17(刘二勇, 陈体军, 白亚平. 浇注工艺对倾斜板制备Al-Pb轴瓦材料显微组织的影响[J]. 铸造技术, 2010, 31: 17) | [47] | Liu Y, Guo J J, Jia J, et al.Microstructures of rapidly solidified Al-In immiscible alloys[J]. Acta Metall. Sin., 2000, 36: 1233(刘源, 郭景杰, 贾均等. 快速凝固Al-In偏晶合金的显微结构[J]. 金属学报, 2000, 36: 1233) | [48] | Zhao J Z.Formation of the minor phase shell on the surface of hypermonotectic alloy powders[J]. Scr. Mater., 2006, 54: 247 | [49] | Yan N, Wang W L, Wei B B.Microstructure formation mechanism of Ni-Pb monotectic alloys rapidly solidified in drop tube[J]. Acta Aeronaut. Astronaut. Sin., 2011, 32: 351(闫娜, 王伟丽, 魏炳波. 落管中Ni-Pb偏晶型合金的快速凝固组织特征及形成机制[J]. 航空学报, 2011, 32: 351) | [50] | Luo B C, Wang H P, Wei B B.Rapid solidification of ternary Ni-Pb-Cu monotectic alloy under free fall conditions[J]. Chin. J. Nonferrous Met., 2009, 19: 279(罗炳池, 王海鹏, 魏炳波. 自由落体条件下三元Ni-Pb-Cu偏晶合金的快速凝固[J]. 中国有色金属学报, 2009, 19: 279) | [51] | Wang Z Y, He J, Yang B J, et al.Liquid-liquid phase separation and formation of two glassy phases in Zr-Ce-Co-Cu immiscible alloys[J]. Acta Metall. Sin., 2016, 52: 1379(王中原, 何杰, 杨柏俊等. Zr-Ce-Co-Cu难混溶合金的液-液相分离和双非晶相形成[J]. 金属学报, 2016, 52: 1379) | [52] | He J, Kaban I, Mattern N, et al.Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation[J]. Sci. Rep., 2016, 6: 25832 | [53] | Prinz B, Romero A, Ratke L.Casting process for hypermonotectic alloys under terrestrial conditions[J]. J. Mater. Sci., 1995, 30: 4715 | [54] | He J, Zhao J Z, Wang X F, et al.An experimental study of the rapid continuous solidification of Al-Bi immiscible alloy[J]. Acta Metall. Sin., 2006, 42: 67(何杰, 赵九洲, 王晓峰等. Al-Bi难混溶合金快速连续凝固的实验研究[J]. 金属学报, 2006, 42: 67) | [55] | He J, Zhao J Z, Li H L, et al.Directional solidification and microstructural refinement of immiscible alloys[J]. Metall. Mater. Trans., 2008, 39A: 1174 | [56] | Zhang Q X, Zhao J Z, He J, et al.Rapid directional solidification and its simulation of Al-Pb alloys[J]. Acta Metall. Sin., 2007, 43: 925(张钦霞, 赵九洲, 何杰等. Al-Pb合金的快速定向凝固及其模拟[J]. 金属学报, 2007, 43: 925) | [57] | Munitz A, Elder-Randall S P, Abbaschian R. Supercooling effects in Cu-10 wt pct Co alloys solidified at different cooling rates[J]. Metall. Trans., 1992, 23A: 1817 | [58] | Zhang X H, Ruan Y, Wang W L, et al.Rapid solidification and dendrite growth of ternary Fe-Sn-Ge and Cu-Pb-Ge monotectic alloys[J]. Sci. China, 2007, 37G: 359(张雪华, 阮莹, 王伟丽等. 三元Fe-Sn-Ge和Cu-Pb-Ge偏晶合金相分离与快速凝固研究[J]. 中国科学, 2007, 37G: 359) | [59] | Wei B, Herlach D M, Sommer F, et al.Rapid solidification of undercooled eutectic and monotectic alloys[J]. Mater. Sci. Eng., 1993, A173: 357 | [60] | Zhu D Y, Yang X H, Han X J, et al.Rapid solidification microstructures of Fe-Sn monotectic alloys at deep undercooling[J]. Chin. J. Nonferrous Met., 2003, 13: 328(朱定一, 杨晓华, 韩秀君等. Fe-Sn偏晶合金的深过冷快速凝固组织[J]. 中国有色金属学报, 2003, 13: 328) | [61] | Li H L, Zhao J Z.Modelling and simulation of the microstructure formation in a strip cast Al-Pb alloy[J]. Acta Metall. Sin., 2010, 46: 695(李海丽, 赵九洲. Al-Pb偏晶合金连续凝固过程模拟[J]. 金属学报, 2010, 46: 695) | [62] | Jiang H X, Zhao J Z.Effect mechanism of a direct current on the solidification of immiscible alloys[J]. Chin. Phys. Lett., 2012, 29: 088104 | [63] | Jiang H X, Zhao J Z, He J.Solidification behavior of immiscible alloys under the effect of a direct current[J]. J. Mater. Sci. Technol., 2014, 30: 1027 | [64] | Jiang H X, He J, Zhao J Z.Influence of electric current pulses on the solidification of Cu-Bi-Sn immiscible alloys[J]. Sci. Rep., 2015, 5: 12680 | [65] | Jiang H X, Zhao J Z, Wang C P, et al.Effect of electric current pulses on solidification of immiscible alloys[J]. Mater. Lett., 2014, 132: 66 | [66] | Li H L, Zhao J Z.Directional solidification of an Al-Pb alloy in a static magnetic field[J]. Comput. Mater. Sci., 2009, 46: 1069 | [67] | Yasuda H, Ohnaka I, Fujimoto S, et al.Fabrication of aligned pores in aluminum by electrochemical dissolution of monotectic alloys solidified under a magnetic field[J]. Scr. Mater., 2006, 54: 527 | [68] | Zheng T X, Zhong Y B, Lei Z S, et al.Effects of high static magnetic field on distribution of solid particles in BiZn immiscible alloys with metastable miscibility gap[J]. J. Alloys Compd., 2015, 623: 36 | [69] | Wang J, Zhong Y B, Wang C, et al.Physical simulation of homogeneous Zn-Bi monotectic alloy prepared by electric-magnet compound field[J]. Acta Phys. Sin., 2011, 60: 076101(王江, 钟云波, 汪超等. 电磁复合场制备匀质Zn-Bi偏晶合金的物理模拟[J]. 物理学报, 2011, 60: 076101) | [70] | Kaban I, K?hler M, Ratke L, et al.Interfacial tension, wetting and nucleation in Al-Bi and Al-Pb monotectic alloys[J]. Acta Mater., 2011, 59: 6880 | [71] | Kaban I, K?ler M, Ratke L, et al.Phase separation in monotectic alloys as a route for liquid state fabrication of composite materials[J]. J. Mater. Sci., 2012, 47: 8360 | [72] | K?hler M, Ratke L, Kaban I, et al.Heterogeneous nucleation in hypermonotectic aluminum alloys[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2011, 27: 012005 | [73] | Wang T M, Cao F, Chen Z N, et al.Three dimensional microstructures and wear resistance of Al-Bi immiscible alloys with different grain refiners[J]. Sci. China Technol. Sci., 2015, 58: 870 | [74] | Zhao J Z, Li H L, Li H Q, et al.Microstructure formation in centrifugally cast Al-Bi alloys[J]. Comput. Mater. Sci., 2010, 49: 121 | [75] | Kotadia H R, Das A, Doernberg E, et al.A comparative study of ternary Al-Sn-Cu immiscible alloys prepared by conventional casting and casting under high-intensity ultrasonic irradiation[J]. Mater. Chem. Phys., 2011, 131: 241 | [76] | Zhai W, Liu H M, Wei B.Liquid phase separation and monotectic structure evolution of ternary Al62.6Sn28.5Cu8.9 immiscible alloy within ultrasonic field[J]. Mater. Lett., 2015, 141: 221 | [77] | Zhai W, Liu H M, Zuo P F, et al.Effect of power ultrasound on microstructural characteristics and mechanical properties of Al81.3Sn12.3Cu6.4 monotectic alloy[J]. Prog. Nat. Sci.: Mater. Int., 2015, 25: 471 | [78] | Sun Q, Jiang H X, Zhao J Z, et al.Microstructure evolution during the liquid-liquid phase transformation of Al-Bi alloys under the effect of TiC particles[J]. Acta Mater., 2017, 129: 321 | [79] | Sun Q, Jiang H X, Zhao J Z, et al.Effect of TiC particles on the liquid-liquid decomposition of Al-Pb alloys[J]. Mater. Des., 2016, 91: 361 | [80] | Sun Q, Jiang H X, Zhao J Z.Effect of micro-alloying element Bi on solidification and microstructure of Al-Pb alloy[J]. Acta Metall. Sin., 2016, 52: 497(孙倩, 江鸿翔, 赵九洲. 微量元素Bi对Al-Pb合金凝固过程及显微组织的影响[J]. 金属学报, 2016, 52: 497) | [81] | Sun Q, Jiang H X, Zhao J Z.Solidification of Al-Pb alloy under the effect of micro-alloying element Ti and C[J]. Mater. Sci. Forum, 2016, 879: 2439 | [82] | Cao C Z, Chen L Y, Xu J Q, et al.Strengthening Al-Bi-TiC0.7N0.3 nanocomposites by Cu addition and grain refinement[J]. Mater. Sci. Eng., 2016, A651: 332 | [83] | Guo J J, Liu Y, Jia J, et al.Coarsening mode and microstructure evolution of Al-In hypermonotectic alloy during rapidly cooling process[J]. Scr. Mater., 2001, 45: 1197 | [84] | Wu M H, Ludwig A, Ratke L.Modelling the solidification of hypermonotectic alloys[J]. Modell. Simul. Mater. Sci. Eng., 2003, 11: 755 | [85] | Zhao J Z, Ratke L.A model describing the microstructure evolution during a cooling of immiscible alloys in the miscibility gap[J]. Scr. Mater., 2004, 50: 543 | [86] | Zhao J Z, Li H L, Zhang X F, et al.Nucleation determined microstructure formation in immiscible alloys[J]. Mater. Lett., 2008, 62: 3779 | [87] | Wang C P, Liu X J, Shi R P, et al.Design and formation mechanism of self-organized core/shell structure composite powder in immiscible liquid system[J]. Appl. Phys. Lett., 2007, 91: 141904 | [88] | Li H L, Zhao J Z.Convective effect on the microstructure evolution during a liquid-liquid decomposition[J]. Appl. Phys. Lett., 2008, 92: 241902 | [89] | Alkemper J, Ratke L.Concurrent nucleation, growth and sedimentation during solidification of Al-Bi alloys[J]. Z. Metallkd, 1994, 85: 365 | [90] | Ratke L.Coarsening of liquid Al-Pb dispersions under reduced gravity conditions[J]. Mater. Sci. Eng., 1995, A203: 399 | [91] | Wu M H, Ludwig A, Ratke L.Modeling of Marangoni-induced droplet motion and melt convection during solidification of hypermonotectic alloys[J]. Metall. Mater. Trans., 2003, 34A: 3009 | [92] | Zhao L, Zhao J Z.Microstructure formation in a gas-atomized drop of Al-Pb-Sn immiscible alloy[J]. Metall. Mater. Trans., 2012, 43A: 5019 | [93] | Zhao J Z, Jiang H X, Sun Q, et al.Progress of research on solidification process and microstructure control of immiscible alloys[J]. Mater. China, 2017, 36: 252(赵九洲, 江鸿翔, 孙倩等. 偏晶合金凝固过程及凝固组织控制方法研究进展[J]. 中国材料进展, 2017, 36: 252) | [94] | Jia J, Zhao J Z, Guo J J, et al.Immiscible Alloys and Their Preparation Technologies [M]. Harbin: Harbin Institute of Technology Press, 2002: 45(贾均, 赵九洲, 郭景杰等. 难混溶合金及其制备技术 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2002: 45) | [95] | Wang C L.Phase Diagrams and its Application [M]. Beijing: Higher Education Press, 2008: 52(王崇琳. 相图理论及其应用 [M]. 北京: 高等教育出版社, 2008: 52) | [96] | Li H L.Study of the mechanism of the microstructure evolution in directionally solidified monotectic alloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2009(李海丽. 偏晶合金定向凝固过程中组织演变机理研究 [D]. 沈阳: 中国科学院金属研究所, 2009) | [97] | Zhao L.Study of the rapid solidification of ternary immiscible alloys [D]. Shenyang: University of Chinese Academy of Sciences, 2012(赵雷. 三元难混溶合金的快速凝固过程研究 [D]. 沈阳: 中国科学院大学, 2012) | [98] | Becker R.Die keimbildung bei der ausscheidung in metallischen mischkristallen[J]. Ann. Phys., 1938, 424: 128 | [99] | Cahn J W, Hilliard J E.Free energy of a nonuniform system. I. Interfacial free energy[J]. J. Chem. Phys., 1958, 28: 258 | [100] | Moldover M R.Interfacial tension of fluids near critical points and two-scale-factor universality[J]. Phys. Rev., 1985, 31A: 1022 | [101] | Chatain D, Eustathopoulos N, Desre P.The interfacial tensions and wetting in the two-liquids region of a regular solution[J]. J. Colloid Interface Sci., 1981, 83: 384 | [102] | Kaptay G. Modelling interfacial energies in metallic systems [J]. Mater. Sci. Forum, 2005, 473-474: 1 | [103] | Kaptay G.A Calphad-compatible method to calculate liquid/liquid interfacial energies in immiscible metallic systems[J]. Calphad, 2008, 32: 338 | [104] | Merkwitz M, Hoyer W.Liquid-liquid interfacial tension in the demixing metal system Al-Pb and Al-In[J]. Z. Metallkd., 1999, 90: 363 | [105] | Takamichi I,Roderick I L G, translated by Xian A P, Wang L W. The Physical Properties of Liquid Metals [M]. Beijing: Science Press, 2006: 159(Takamichi I, Roderick I L G著, 冼爱平, 王连文译. 液态金属的物理性能 [M]. 北京: 科学出版社, 2006: 159) | [106] | Brooks R F, Dinsdale A T, Quested P N.The measurement of viscosity of alloys—A review of methods, data and models[J]. Meas. Sci. Technol., 2005, 16: 354 | [107] | Dinsdale A T, Quested P N.The viscosity of aluminium and its alloys—A review of data and models[J]. J. Mater. Sci., 2004, 39: 7221 | [108] | Wu Y Q, Li C J.Investigation of the phase separation of Al-Bi immiscible alloy melts by viscosity measurements[J]. J. Appl. Phy., 2012, 111: 073521 | [109] | Andrade E N da C. A theory of the viscosity of liquids.—Part I[J]. London, Edinburgh, Dublin Philos. Mag. J. Sci., 1934, 17: 497 | [110] | Kaptay G.A unified equation for the viscosity of pure liquid metals[J]. Z. Metallkd., 2005, 96: 1 | [111] | Grosse A V.The viscosity of liquid metals and an empirical relationship between their activation energy of viscosity and their melting points[J]. J. Inorg. Nucl. Chem., 1961, 23: 333 | [112] | Iida T, Morita Z, Takeuchi S.Viscosity measurements of pure liquid metals by the capillary Method[J]. J. Jpn. Inst. Met., 1975, 39: 1169(飯田孝道, 森田善一郎, 竹内栄. 細管法によゐ純金属液体の粘度測定[J]. 日本金属学会誌, 1975, 39: 1169) | [113] | Frohberg G, Kraatz K H, Wever H. Investigations on self-and interdiffusion in liquid metals [J]. Mater. Sci. Forum, 1987, 15-18: 529 | [114] | Sutherland W.A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin[J]. London, Edinburgh, Dublin Philos. Mag. J. Sci., 1905, 9: 781 | [115] | Kaptay G.A new theoretical equation for temperature dependent self-diffusion coefficients of pure liquid metals[J]. Int. J. Mater. Res., 2008, 99: 14 | [116] | Roy A K, Chhabra R P.Prediction of solute diffusion coefficients in liquid metals[J]. Metall. Trans., 2008, 19A: 273 | [117] | Sundquist B E, Oriani R A.Homogeneous nucleation in a miscibility gap system: A critical test of nucleation theory[J]. J. Chem. Phys., 1962, 36: 2604 | [118] | Uebber N, Ratke L.Undercooling and nucleation within the liquid miscibility gap of Zn-Pb alloys[J]. Scr. Metall. Mater., 1991, 25: 1133 | [119] | Perepezko J H, Galaup C, Cooper K P.Solidification of undercooled monotectic alloys [A]. Materials Processing in the Reduced Gravity Environment of Space[C]. Amsterdam: Elsevier, 1982: 491 | [120] | Gránásy L, Ratke L.Homogeneous nucleation within the liquid miscibility gap of Zn-Pb alloys[J]. Scr. Metall. Mater., 1993, 28: 1329 | [121] | Zener C.Theory of growth of spherical precipitates from solid solution[J]. J. Appl. Phys., 1949, 20: 950 | [122] | Lifshitz I M, Slyozov V V.The kinetics of precipitation from supersaturated solid solutions[J]. J. Phys. Chem. Solids, 1961, 19: 35 | [123] | Wagner C.Theorie der alterung von niederschlagen durch umlosen (Ostwald-Reifung)[J]. Z. Elektrochem., 1961, 65: 581 | [124] | Kneissl A, Fischmeister H.Solidification and Ostwald ripening of near-monotectic zinc-lead alloys[J]. Science, 1984, 225: 198 | [125] | Zhao J, Ratke L.Repeated nucleation of minority phase droplets induced by drop motion[J]. Scr. Mater., 1998, 39: 181 | [126] | Marqusee J A, Ross J.Theory of Ostwald ripening: Competitive growth and its dependence on volume fraction[J]. J. Chem. Phys., 1984, 80: 536 | [127] | Ratke L, Host M.Convective contributions to Ostwald Ripening in dispersions at low Peclet numbers[J]. J. Colloid Interface Sci., 1991, 141: 226 | [128] | Zhao J Z. The kinetics of the liquid-liquid decomposition under the rapid solidification conditions of gas atomization [J]. Mater. Sci. Eng., 2007, A454-455: 637 | [129] | Zhao J Z, Guo J J, Jia J, et al.Collision coarsening of dispersion droplets in solidification process of monotectic alloy[J]. Trans. Nonferrous Met. Soc. China, 1995, 2: 85 | [130] | Zhao J Z, Jia J, Li Q C.Collision coarsening of second phase droplets during liquid-liquid phase transfomation of monotectic alloy[J]. Chin. J. Mater. Res., 1995, 9: 241(赵九洲, 贾均, 李庆春. 偏晶合金液-液相变过程中第二相液滴的碰撞粗化[J]. 材料研究学报, 1995, 9: 241) | [131] | Li H L, Zhao J Z, Zhang Q X, et al.Microstructure formation in a directionally solidified immiscible alloy[J]. Metall. Mater. Trans., 2008, 39A: 3308 | [132] | Zhao L, Zhao J Z.Rapid solidification behavior of Cu-Co-Fe alloy[J]. J. Mater. Res., 2013, 28: 1203 | [133] | Zhou F M, Sun D K, Zhu M F.Lattice Boltzmann modelling of liquid-liquid phase separation of monotectic alloys[J]. Acta Phys. Sin., 2010, 59: 3394(周丰茂, 孙东科, 朱鸣芳. 偏晶合金液-液相分离的格子玻尔兹曼方法模拟[J]. 物理学报, 2010, 59: 3394) | [134] | Wang W L, Wu Y H, Li L H, et al.Homogeneous granular microstructures developed by phase separation and rapid solidification of liquid Fe-Sn immiscible alloy[J]. J. Alloys Compd., 2017, 693: 650 | [135] | Zhao J Z, Ratke L, Jia J, et al.Modeling and simulation of the microstructure evolution during a cooling of immiscible alloys in the miscibility gap[J]. J. Mater. Sci. Technol., 2002, 18: 197 | [136] | Ratke L. Evolution of the microstructure during solidification of immiscible alloys [J]. Mater. Sci. Forum, 1996,215-216: 251 | [137] | Nestler B, Wheeler A A, Ratke L, et al.Phase-field model for solidification of a monotectic alloy with convection[J]. Physica, 2000, 141D: 133 | [138] | Nestler B, Wheeler A A.Phase-field modeling of multi-phase solidification[J]. Comput. Phys. Commun., 2002, 147: 230 | [139] | Tegze G, Pusztai T, Gránásy L. Phase field simulation of liquid phase separation with fluid flow [J]. Mater. Sci. Eng., 2005, A413-414: 418 | [140] | Rogers J R, Davis R H.Modeling of collision and coalescence of droplets during microgravity processing of Zn-Bi immiscible alloys[J]. Metall. Trans., 1990, 21A: 59 | [141] | Bergman ?, Fredriksson H.A study of the coalescence process inside the miscibility gap in Zn-Bi alloys [A]. Materials Processing in the Reduced Gravity Environment of Space[C]. Amsterdam: Elsevier, 1982: 563 | [142] | Ahlborn H, Neumann H, Schott H J.Segregation behavior of rapidly cooled monotectic Al-In and Al-Pb alloys[J]. Z. Metallkd., 1993, 84: 748 | [143] | Berrenberg T, Sahm P R.Production and properties of a hypermonotectic AlPb alloy as an antifriction layer. 1. Rapidly solidified cast coatings[J]. Z. Metallkd., 1996, 87: 187 | [144] | Zhao J Z, Drees S, Ratke L.Strip casting of Al-Pb alloys—A numerical analysis[J]. Mater. Sci. Eng., 2000, A282: 262 | [145] | Xia Z C, Wang W L, Wu Y H, et al.Solidification pathways of ternary Cu62.5Fe27.5Sn10 alloy modulated through liquid undercooling and containerless processing[J]. Appl. Phys., 2016, 122A: 985 | [146] | Luo S B, Wang W L, Xia Z C, et al.Liquid phase separation and subsequent dendritic solidification of ternary Fe35Cu35Si30 alloy[J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 2762 | [147] | Sun Z B, Song X P, Hu Z D, et al.Secondary liquid separation and solidification of Cu-Co alloys under deep supercooling[J]. Chin. J. Nonferrous Met., 2001, 11: 172(孙占波, 宋晓平, 胡柱东等. 深过冷条件下Cu-Co合金的二次液相分解与合金的凝固[J]. 中国有色金属学报, 2001, 11: 172) | [148] | Wu Y H, Wang W L, Wei B B.Experimental investigation and numerical simulation on liquid phase separation of ternary Fe-Sn-Si/Ge monotectic alloy[J]. Acta Phys. Sin., 2016, 65: 106402(吴宇昊, 王伟丽, 魏炳波. 液态三元Fe-Sn-Si/Ge偏晶合金相分离过程的实验和模拟研究[J]. 物理学报, 2016, 65: 106402) | [149] | He J, Jiang H X, Zhao J Z, et al.AlNiYCo amorphous matrix composites induced by bismuth and lead additions[J]. Metall. Mater. Trans., 2011, 42A: 4100 | [150] | He J, Li H Q, Yang B J, et al.Liquid phase separation and microstructure characterization in a designed Al-based amorphous matrix composite with spherical crystalline particles[J]. J. Alloys Compd., 2010, 489: 535 | [151] | He J, Li H Q, Zhao J Z, et al.Al-based metallic glass composites containing fcc Pb-rich crystalline spheres[J]. Appl. Phys. Lett., 2008, 93: 131907 | [152] | Zhao L, Zhao J Z.Study of the solidification of Ni-Ag monotectic alloy[J]. Acta Metall. Sin., 2012, 48: 1381(赵雷, 赵九洲. Ni-Ag偏晶合金凝固过程研究[J]. 金属学报, 2012, 48: 1381) | [153] | He J, Mattern N, Tan J, et al.A bridge from monotectic alloys to liquid-phase-separated bulk metallic glasses: Design, microstructure and phase evolution[J]. Acta Mater., 2013, 61: 2102 | [154] | Liu D M, Zhao J Z, Ye H Q.Modeling of the solidification of gas-atomized alloy droplets during spray forming[J]. Mater. Sci. Eng., 2004, A372: 229 | [155] | Zhao J Z.Equipment for preparing monotectic alloy with shell type composite powder and its use-method [P]. Chin Pat, 200610047821.6, 2006(赵九洲. 用于制备偏晶合金壳型复合组织粉末的设备及其使用方法 [P]. 中国专利, 200610047821.6, 2006) | [156] | Derby B, Favier J J.A criterion for the determination of monotectic structure[J]. Acta Metall., 1983, 31: 1123 | [157] | Kamio A, Kumai S, Tezuka H.Solidification structure of monotectic alloys[J]. Mater. Sci. Eng., 1991, A146: 105 | [158] | Majumdar B, Chattopadhyay K.Aligned monotectic growth in unidirectionally solidified Zn-Bi alloys[J]. Metall. Mater. Trans., 2000, 31A: 1833 | [159] | Grugel R N, Lograsso T A, Hellawell A.The solidification of monotectic alloys—Microstructures and phase spacings[J]. Metall. Mater. Trans., 1984, 15A: 1003 | [160] | Prinz B, Romero A, Ratke L.Casting process for hypermonotectic alloys under terrestrial conditions[J]. J. Mater. Sci., 1995, 30: 4715 | [161] | Yang Z Z, Sun Q, Zhao J Z.Directional solidification of monotectic composition Al-Bi alloy[J]. Acta Metall. Sin., 2014, 50: 25(杨志增, 孙倩, 赵九洲. Al-Bi偏晶点成分合金定向凝固过程研究[J]. 金属学报, 2014, 50: 25) | [162] | He J, Zhao J Z, Wang X F, et al.Investigation of rapid directional solidification of Al-based immiscible alloys I. Effect of solid/liquid interface[J]. Acta Metall. Sin., 2007, 43: 561(何杰, 赵九洲, 王晓峰等. Al基难混溶合金快速定向凝固研究I.固/液界面的影响[J]. 金属学报, 2007, 43: 561) | [163] | He J, Zhao J Z, Wang X F, et al.Investigation of rapid directional solidification of Al-based immiscible alloys II. Effect of static magnetic field[J]. Acta Metall. Sin., 2007, 43: 567(何杰, 赵九洲, 王晓峰等. Al基难混溶合金快速定向凝固研究II.恒定磁场的影响[J]. 金属学报, 2007, 43: 567) | [164] | He J, Zhao J Z, Wang X F, et al.Investigation of rapid directional solidification of Al-based immiscible alloys III. Effect of the third element[J]. Acta Metall. Sin., 2007, 43: 573(何杰, 赵九洲, 王晓峰等. Al基难混溶合金快速定向凝固研究III.第三组元的影响[J]. 金属学报, 2007, 43: 573) | [165] | Zhao J Z, Li H L, Wang Q L, et al.Rapid directional solidification of Al-Pb alloy under a static magnetic field[J]. Acta Metall. Sin., 2009, 45: 1344(赵九洲, 李海丽, 王青亮等. 恒定磁场作用下Al-Pb合金快速定向凝固[J]. 金属学报, 2009, 45: 1344) | [166] | Zhao Z L, Liu Y, Liu L.Grain refinement induced by a pulsed magnetic field and synchronous solidification[J]. Mater. Manuf. Processes, 2011, 26: 1202 | [167] | Li H, Liu S C, Jie J C, et al.Effect of pulsed magnetic field on the grain refinement and mechanical properties of 6063 aluminum alloy by direct chill casting[J]. Int. J. Adv. Manuf. Technol., 2017, 93: 3033 | [168] | Flemings M C.Solidification Processing[M]. New York: McGraw-Hill, 1974: 224 | [169] | Yang S, Liu W J, Jia J.Effects of transverse magnetic field during directional solidification of monotectic Al-6.5wt%Bi alloy[J]. J. Mater. Sci., 2001, 36: 5351 | [170] | Yasuda H, Kato S, Shinba T, et al.Regular structure formation of hypermonotectic Al-In alloys[J]. Mater. Sci. Forum, 2010, 649: 131 | [171] | Zhang Y K, Gao J, Nagamatsu D, et al.Reduced droplet coarsening in electromagnetically levitated and phase-separated Cu-Co alloys by imposition of a static magnetic field[J]. Scr. Mater., 2008, 59: 1002 | [172] | Yasuda H, Ohnaka I, Kawakami O, et al.Effect of magnetic field on solidification in Cu-Pb monotectic alloys[J]. ISIJ Int., 2003, 43: 942 | [173] | Zheng T X, Zhong Y B, Lei Z S, et al.Effects of high static magnetic field on distribution of solid particles in BiZn immiscible alloys with metastable miscibility gap[J]. J. Alloys Compd., 2015, 623: 36 | [174] | Schmit R L, Verhoeven J D.Diffusion and electrotransport of solutes in molten germanium-implications for producing P-N junctions[J]. Trans. Metall. Soc. AIME, 1967, 239: 148 | [175] | Misra A K.A novel solidification technique of metals and alloys: Under the Influence of applied potential[J]. Metall. Trans., 1985, 16A: 1354 | [176] | Misra A K.Misra technique1 applied to solidification of cast iron[J]. Metall. Trans., 1986, 17A: 358 | [177] | Ahmed S, Bond R, McKannan E C. Solidification processing superalloys in an electric field[J]. Adv. Mater. Proc., 1991, 140: 30 | [178] | Li J M, Li S L, Li J, et al.Modification of solidification structure by pulse electric discharging[J]. Scr. Metall. Mater., 1994, 31: 1691 | [179] | Liao X L, Zhai Q J, Luo J, et al.Refining mechanism of the electric current pulse on the solidification structure of pure aluminum[J]. Acta Mater., 2007, 55: 3103 | [180] | Sun Q.Study of the solidification of monotectic alloys under the effect of microalloying [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2017(孙倩. 偏晶合金凝固过程及微合金化的影响 [D]. 沈阳: 中国科学院金属研究所, 2017) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|