|
|
纳米金属层状材料强塑性的界面调控 |
郑士建1( ), 闫哲1, 孔祥飞2, 张瑞丰3 |
1.河北工业大学 材料科学与工程学院 天津市材料层状复合与界面控制技术重点实验室 天津 300401 2.有研工程技术研究院有限公司 异质连接材料与技术研究所 北京 101407 3.北京航空航天大学 材料科学与工程学院 北京 100191 |
|
Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites |
ZHENG Shijian1( ), YAN Zhe1, KONG Xiangfei2, ZHANG Ruifeng3 |
1.Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China 2.Institute of Heterogeneous Bonding Materials and Technologies, GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China 3.School of Materials Science and Engineering, Beihang University, Beijing 100191, China |
引用本文:
郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
Shijian ZHENG,
Zhe YAN,
Xiangfei KONG,
Ruifeng ZHANG.
Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. Acta Metall Sin, 2022, 58(6): 709-725.
1 |
Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Prog. Mater. Sci., 2005, 51: 427
doi: 10.1016/j.pmatsci.2005.08.003
|
2 |
Antolovich S D, Armstrong R W. Plastic strain localization in metals: Origins and consequences [J]. Prog. Mater. Sci., 2014, 59: 1
doi: 10.1016/j.pmatsci.2013.06.001
|
3 |
Zhang J Y, Lei S, Liu Y, et al. Length scale-dependent deformation behavior of nanolayered Cu/Zr micropillars [J]. Acta Mater., 2012, 60: 1610
doi: 10.1016/j.actamat.2011.12.001
|
4 |
Zhang J Y, Niu J J, Zhang X, et al. Tailoring nanostructured Cu/Cr multilayer films with enhanced hardness and tunable modulus [J]. Mater. Sci. Eng., 2012, A543: 139
|
5 |
Zhang J Y, Li J, Liang X Q, et al. Achieving optimum mechanical performance in metallic nanolayered Cu/X (X = Zr, Cr) micropillars [J]. Sci. Rep., 2014, 4: 4205
doi: 10.1038/srep04205
pmid: 24667702
|
6 |
Wu K, Zhang J Y, Li J, et al. Length-scale-dependent cracking and buckling behaviors of nanostructured Cu/Cr multilayer films on compliant substrates [J]. Acta Mater., 2015, 100: 344
doi: 10.1016/j.actamat.2015.08.055
|
7 |
Wu K, Yuan H Z, Liang X Q, et al. Size dependence of buckling strains of Cr films, Cu films and Cu/Cr multilayers on compliant substrates [J]. Scr. Mater., 2018, 146: 1
doi: 10.1016/j.scriptamat.2017.10.025
|
8 |
Zhang J Y, Zhang X, Wang R H, et al. Length-scale-dependent deformation and fracture behavior of Cu/X (X = Nb, Zr) multilayers: The constraining effects of the ductile phase on the brittle phase [J]. Acta Mater., 2011, 59: 7368
doi: 10.1016/j.actamat.2011.08.016
|
9 |
Malow T R, Koch C C. Grain growth in nanocrystalline iron prepared by mechanical attrition [J]. Acta Mater., 1997, 45: 2177
doi: 10.1016/S1359-6454(96)00300-X
|
10 |
Bai X M, Voter A F, Hoagland R G, et al. Efficient annealing of radiation damage near grain boundaries via interstitial emission [J]. Science, 2010, 327: 1631
doi: 10.1126/science.1183723
|
11 |
Avallone J T, Nizolek T J, Bales B B, et al. Creep resistance of bulk copper-niobium composites: An inverse effect of multilayer length scale [J]. Acta Mater., 2019, 176: 189
doi: 10.1016/j.actamat.2019.06.029
|
12 |
Yan Z, Liu Z R, Kong X F, et al. Effect of void morphology on void facilitated plasticity in irradiated Cu/Nb metallic nanolayered composites [J]. J. Nucl. Mater., 2022, 558: 153380
doi: 10.1016/j.jnucmat.2021.153380
|
13 |
Misra A, Hirth J P, Hoagland R G. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites [J]. Acta Mater., 2005, 53: 4817
doi: 10.1016/j.actamat.2005.06.025
|
14 |
Liu Y, Bufford D, Wang H, et al. Mechanical properties of highly textured Cu/Ni multilayers [J]. Acta Mater., 2011, 59: 1924
doi: 10.1016/j.actamat.2010.11.057
|
15 |
Zheng S J, Beyerlein I J, Carpenter J S, et al. High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces [J]. Nat. Commun., 2013, 4: 1696
doi: 10.1038/ncomms2651
|
16 |
Zeng L F, Gao R, Fang Q F, et al. High strength and thermal stability of bulk Cu/Ta nanolamellar multilayers fabricated by cross accumulative roll bonding [J]. Acta Mater., 2016, 110: 341
doi: 10.1016/j.actamat.2016.03.034
|
17 |
Misra A, Hoagland R G, Kung H. Thermal stability of self-supported nanolayered Cu/Nb films [J]. Philos. Mag., 2004, 84: 1021
doi: 10.1080/14786430310001659480
|
18 |
Misra A, Hoagland R G. Effects of elevated temperature annealing on the structure and hardness of copper/niobium nanolayered films [J]. J. Mater. Res., 2005, 20: 2046
doi: 10.1557/JMR.2005.0250
|
19 |
Carpenter J S, Zheng S J, Zhang R F, et al. Thermal stability of Cu-Nb nanolamellar composites fabricated via accumulative roll bonding [J]. Philos. Mag., 2013, 93: 718
doi: 10.1080/14786435.2012.731527
|
20 |
Han W Z, Cerreta E K, Mara N A, et al. Deformation and failure of shocked bulk Cu-Nb nanolaminates [J]. Acta Mater., 2014, 63: 150
doi: 10.1016/j.actamat.2013.10.019
|
21 |
Zhang R F, Germann T C, Liu X Y, et al. Layer size effect on the shock compression behavior of fcc-bcc nanolaminates [J]. Acta Mater., 2014, 79: 74
doi: 10.1016/j.actamat.2014.07.016
|
22 |
Zhang R F, Germann T C, Wang J, et al. Role of interface structure on the plastic response of Cu/Nb nanolaminates under shock compression: Non-equilibrium molecular dynamics simulations [J]. Scr. Mater., 2013, 68: 114
doi: 10.1016/j.scriptamat.2012.09.022
|
23 |
Demkowicz M J, Hoagland R G, Hirth J P. Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites [J]. Phys. Rev. Lett., 2008, 100: 136102
doi: 10.1103/PhysRevLett.100.136102
|
24 |
Demkowicz M J, Bellon P, Wirth B D. Atomic-scale design of radiation-tolerant nanocomposites [J]. MRS Bull., 2010, 35: 992
doi: 10.1557/mrs2010.704
|
25 |
Beyerlein I J, Caro A, Demkowicz M J, et al. Radiation damage tolerant nanomaterials [J]. Mater. Today, 2013, 16: 443
doi: 10.1016/j.mattod.2013.10.019
|
26 |
Yu K Y, Sun C, Chen Y, et al. Superior tolerance of Ag/Ni multilayers against Kr ion irradiation: An in situ study [J]. Philos. Mag., 2013, 93: 3547
doi: 10.1080/14786435.2013.815378
|
27 |
Kashinath A, Misra A, Demkowicz M J. Stable storage of helium in nanoscale platelets at semicoherent interfaces [J]. Phys. Rev. Lett., 2013, 110: 086101
|
28 |
Carpenter J S, Vogel S C, LeDonne J E, et al. Bulk texture evolution of Cu-Nb nanolamellar composites during accumulative roll bonding [J]. Acta Mater., 2012, 60: 1576
doi: 10.1016/j.actamat.2011.11.045
|
29 |
Spitzig W A, Pelton A R, Laabs F C. Characterization of the strength and microstructure of heavily cold worked Cu/Nb composites [J]. Acta Metall., 1987, 35: 2427
doi: 10.1016/0001-6160(87)90140-4
|
30 |
McKeown J, Misra A, Kung H, et al. Microstructures and strength of nanoscale Cu-Ag multilayers [J]. Scr. Mater., 2002, 46: 593
doi: 10.1016/S1359-6462(02)00036-2
|
31 |
Beyerlein I J, Mara N A, Bhattacharyya D, et al. Texture evolution via combined slip and deformation twinning in rolled silver-copper cast eutectic nanocomposite [J]. Int. J. Plast., 2011, 27: 121
doi: 10.1016/j.ijplas.2010.05.007
|
32 |
Labat S, Bocquet F, Gilles B, et al. Stresses and interfacial structure in Au-Ni and Ag-Cu metallic multilayers [J]. Scr. Mater., 2004, 50: 717
doi: 10.1016/j.scriptamat.2003.11.049
|
33 |
Misra A, Verdier M, Lu Y C, et al. Structure and mechanical properties of Cu-X (X = Nb, Cr, Ni) nanolayered composites [J]. Scr. Mater., 1998, 39: 555
doi: 10.1016/S1359-6462(98)00196-1
|
34 |
Zhu X Y, Liu X J, Zong R L, et al. Microstructure and mechanical properties of nanoscale Cu/Ni multilayers [J]. Mater. Sci. Eng., 2010, A527: 1243
|
35 |
Wang Y C, Liang F, Tan H F, et al. Enhancing fatigue strength of high-strength ultrafine-scale Cu/Ni laminated composites [J]. Mater. Sci. Eng., 2018, A714: 43
|
36 |
Tan H F, Zhang B, Luo X M, et al. High‐cycle fatigue properties of ultrafine‐scale Cu/Ni laminated composites [J]. Adv. Eng. Mater., 2016, 18: 2003
doi: 10.1002/adem.201600120
|
37 |
Tran A S. Phase transformation and interface fracture of Cu/Ta multilayers: A molecular dynamics study [J]. Eng. Fract. Mech., 2020, 239: 107292
doi: 10.1016/j.engfracmech.2020.107292
|
38 |
Li J J, Lu W J, Zhang S Y, et al. Large strain synergetic material deformation enabled by hybrid nanolayer architectures [J]. Sci. Rep., 2017, 7: 11371
doi: 10.1038/s41598-017-11001-w
|
39 |
Zhang J Y, Liu Y, Chen J, et al. Mechanical properties of crystalline Cu/Zr and crystal-amorphous Cu/Cu-Zr multilayers [J]. Mater. Sci. Eng., 2012, A552: 392
|
40 |
Wu K, Wang Y Q, Yuan H Z, et al. Interfacial stress transfer mechanism of Cu-Zr amorphous films on polyimide substrates: Effect of deformation-induced devitrification [J]. J. Alloys Compd., 2019, 783: 841
doi: 10.1016/j.jallcom.2019.01.016
|
41 |
Mitchell T E, Lu Y C, Griffin A J, et al. Structure and mechanical properties of copper/niobium multilayers [J]. J. Am. Ceram. Soc., 1997, 80: 1673
doi: 10.1111/j.1151-2916.1997.tb03037.x
|
42 |
Zhang J Y, Zhang X, Liu G, et al. Scaling of the ductility with yield strength in nanostructured Cu/Cr multilayer films [J]. Scr. Mater., 2010, 63: 101
doi: 10.1016/j.scriptamat.2010.03.024
|
43 |
Fu E G, Li N, Misra A, et al. Mechanical properties of sputtered Cu/V and Al/Nb multilayer films [J]. Mater. Sci. Eng., 2008, A493: 283
|
44 |
Zheng S J, Wang J, Carpenter J S, et al. Plastic instability mechanisms in bimetallic nanolayered composites [J]. Acta Mater., 2014, 79: 282
doi: 10.1016/j.actamat.2014.07.017
|
45 |
Zheng S J, Shao S, Zhang J, et al. Adhesion of voids to bimetal interfaces with non-uniform energies [J]. Sci. Rep., 2015, 5: 1696
|
46 |
Ma X L, Huang C X, Moering J, et al. Mechanical properties of copper/bronze laminates: Role of interfaces [J]. Acta Mater., 2016, 116: 43
doi: 10.1016/j.actamat.2016.06.023
|
47 |
Ghalandari L, Moshksar M M. High-strength and high-conductive Cu/Ag multilayer produced by ARB [J]. J. Alloys Compd., 2010, 506: 172
doi: 10.1016/j.jallcom.2010.06.172
|
48 |
Sun Y F, Tsuji N, Fujii H, et al. Cu/Zr nanoscaled multi-stacks fabricated by accumulative roll bonding [J]. J. Alloys Compd., 2010, 504(): S443
doi: 10.1016/j.jallcom.2010.02.201
|
49 |
Lee S B, LeDonne J E, Lim S C V, et al. The heterophase interface character distribution of physical vapor-deposited and accumulative roll-bonded Cu-Nb multilayer composites [J]. Acta Mater., 2012, 60: 1747
doi: 10.1016/j.actamat.2011.12.007
|
50 |
Hansen B L, Carpenter J S, Sintay S D, et al. Modeling the texture evolution of Cu/Nb layered composites during rolling [J]. Int. J. Plast., 2013, 49: 71
doi: 10.1016/j.ijplas.2013.03.001
|
51 |
Beyerlein I J, Mayeur J R, McCabe R J, et al. Influence of slip and twinning on the crystallographic stability of bimetal interfaces in nanocomposites under deformation [J]. Acta Mater., 2014, 72: 137
doi: 10.1016/j.actamat.2014.03.041
|
52 |
Beyerlein I J, Mayeur J R, Zheng S J, et al. Emergence of stable interfaces under extreme plastic deformation [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 4386
doi: 10.1073/pnas.1319436111
|
53 |
Hall E O. The deformation and ageing of mild steel: III Discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
|
54 |
Petch N J. The cleavage strength of polycrystals [J]. J. Iron Steel Inst., 1953, 174: 25
|
55 |
Jankowski A F, Nyakiti L O. Anomalies in Hall-Petch strengthening for nanocrystalline Au-Cu alloys below 10nm grain size [J]. Surf. Coat. Technol., 2010, 205: 1398
doi: 10.1016/j.surfcoat.2010.07.106
|
56 |
Kim W J. Explanation for deviations from the Hall-Petch relation based on the creep behavior of an ultrafine-grained Mg-Li alloy with low diffusivity [J]. Scr. Mater., 2009, 61: 652
doi: 10.1016/j.scriptamat.2009.06.001
|
57 |
Li N, Wang J, Misra A, et al. Direct observations of confined layer slip in Cu/Nb multilayers [J]. Microsc. Microanal., 2012, 18: 1155
doi: 10.1017/S143192761200133X
|
58 |
Bufford D, Bi Z, Jia Q X, et al. Nanotwins and stacking faults in high-strength epitaxial Ag/Al multilayer films [J]. Appl. Phys. Lett., 2012, 101: 223112
doi: 10.1063/1.4768000
|
59 |
Rao S I, Hazzledine P M. Atomistic simulations of dislocation-interface interactions in the Cu-Ni multilayer system [J]. Philos. Mag., 2000, 80A: 2011
|
60 |
Koehler J S. Attempt to design a strong solid [J]. Phys. Rev., 1970, 2B: 547
|
61 |
Beyerlein I J, Wang J, Zhang R F. Interface-dependent nucleation in nanostructured layered composites [J]. APL Mater., 2013, 1: 32112
doi: 10.1063/1.4820424
|
62 |
Ratheneau G W. Report of the conference on defects in crystalline solids [J]. Acta Crystallogr., 1955, 8: 855
doi: 10.1107/S0365110X55002673
|
63 |
Shao S, Wang J, Misra A, et al. Spiral patterns of dislocations at nodes in (111) semi-coherent fcc interfaces [J]. Sci. Rep., 2013, 3: 2448
doi: 10.1038/srep02448
|
64 |
Shao S, Wang J, Misra A. Energy minimization mechanisms of semi-coherent interfaces [J]. J. Appl. Phys., 2014, 116: 23508
doi: 10.1063/1.4889927
|
65 |
Zhang J Y, Lei S, Niu J, et al. Intrinsic and extrinsic size effects on deformation in nanolayered Cu/Zr micropillars: From bulk-like to small-volume materials behavior [J]. Acta Mater., 2012, 60: 4054
doi: 10.1016/j.actamat.2012.03.056
|
66 |
Xiao Y Y, Kong X F, Yao B N, et al. Atomistic insight into the dislocation nucleation at crystalline/crystalline and crystalline/amorphous interfaces without full symmetry [J]. Acta Mater., 2019, 162: 255
doi: 10.1016/j.actamat.2018.09.068
|
67 |
Chen Y, Shao S, Liu X Y, et al. Misfit dislocation patterns of Mg-Nb interfaces [J]. Acta Mater., 2017, 126: 552
doi: 10.1016/j.actamat.2016.12.041
|
68 |
Shen X P, Yao B N, Liu Z R, et al. Mechanistic insights into interface-facilitated dislocation nucleation and phase transformation at semicoherent bimetal interfaces [J]. Int. J. Plast., 2021, 146: 103105
doi: 10.1016/j.ijplas.2021.103105
|
69 |
Chen X Y, Kong X F, Misra A, et al. Effect of dynamic evolution of misfit dislocation pattern on dislocation nucleation and shear sliding at semi-coherent bimetal interfaces [J]. Acta Mater., 2018, 143: 107
doi: 10.1016/j.actamat.2017.10.012
|
70 |
Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials—Development of the accumulative roll-bonding (ARB) process [J]. Acta Mater., 1999, 47: 579
doi: 10.1016/S1359-6454(98)00365-6
|
71 |
Zheng S J, Carpenter J S, Mccabe R J, et al. Engineering interface structures and thermal stabilities via SPD processing in bulk nanostructured metals [J]. Sci. Rep., 2014, 4: 4226
doi: 10.1038/srep04226
|
72 |
Zhang Y F, Li Q, Gong M, et al. Deformation behavior and phase transformation of nanotwinned Al/Ti multilayers [J]. Appl. Surf. Sci., 2020, 527: 146776
doi: 10.1016/j.apsusc.2020.146776
|
73 |
Shen Z, Wagoner R H, Clark W A T. Dislocation and grain boundary interactions in metals [J]. Acta Metall., 1988, 36: 3231
doi: 10.1016/0001-6160(88)90058-2
|
74 |
Lee T C, Robertson I M, Birnbaum H K. TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals [J]. Philos. Mag., 1990, 62A: 131
|
75 |
Lee T C, Robertson I M, Birnbaum H K. An in situ transmission electron microscope deformation study of the slip transfer mechanisms in metals [J]. Metall. Trans., 1990, 21A: 2437
|
76 |
Wang J. Atomistic simulations of dislocation pileup: Grain boundaries interaction [J]. JOM, 2015, 67: 1515
doi: 10.1007/s11837-015-1454-0
|
77 |
Spearot D E, Jacob K I, McDowell D L. Nucleation of dislocations from [001] bicrystal interfaces in aluminum [J]. Acta Mater., 2005, 53: 3579
doi: 10.1016/j.actamat.2005.04.012
|
78 |
Spearot D E, Jacob K I, McDowell D L. Dislocation nucleation from bicrystal interfaces with dissociated structure [J]. Int. J. Plast., 2007, 23: 143
doi: 10.1016/j.ijplas.2006.03.008
|
79 |
Zhang R F, Wang J, Beyerlein I J, et al. Dislocation nucleation mechanisms from fcc/bcc incoherent interfaces [J]. Scr. Mater., 2011, 65: 1022
doi: 10.1016/j.scriptamat.2011.09.008
|
80 |
Zhang R F, Wang J, Beyerlein I J, et al. Atomic-scale study of nucleation of dislocations from fcc-bcc interfaces [J]. Acta Mater., 2012, 60: 2855
doi: 10.1016/j.actamat.2012.01.050
|
81 |
Beyerlein I J, Wang J, Zhang R F. Mapping dislocation nucleation behavior from bimetal interfaces [J]. Acta Mater., 2013, 61: 7488
doi: 10.1016/j.actamat.2013.08.061
|
82 |
Mara N A, Beyerlein I J. Review: Effect of bimetal interface structure on the mechanical behavior of Cu-Nb fcc-bcc nanolayered composites [J]. J. Mater. Sci., 2014, 49: 6497
doi: 10.1007/s10853-014-8342-9
|
83 |
Wang J, Hoagland R G, Liu X Y, et al. The influence of interface shear strength on the glide dislocation-interface interactions [J]. Acta Mater., 2011, 59: 3164
doi: 10.1016/j.actamat.2011.01.056
|
84 |
Wang J, Hoagland R G, Hirth J P, et al. Atomistic simulations of the shear strength and sliding mechanisms of copper-niobium interfaces [J]. Acta Mater., 2008, 56: 3109
doi: 10.1016/j.actamat.2008.03.003
|
85 |
Demkowicz M J, Structure Thilly L., shear resistance and interaction with point defects of interfaces in Cu-Nb nanocomposites synthesized by severe plastic deformation [J]. Acta Mater., 2011, 59: 7744
doi: 10.1016/j.actamat.2011.09.004
|
86 |
Pan Q S, Zhou H F, Lu Q H, et al. History-independent cyclic response of nanotwinned metals [J]. Nature, 2017, 551: 214
doi: 10.1038/nature24266
|
87 |
Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
doi: 10.1126/science.1092905
|
88 |
Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper [J]. Science, 2009, 323: 607
doi: 10.1126/science.1167641
pmid: 19179523
|
89 |
McCabe R J, Beyerlein I J, Carpenter J S, et al. The critical role of grain orientation and applied stress in nanoscale twinning [J]. Nat. Commun., 2014, 5: 3806
doi: 10.1038/ncomms4806
|
90 |
Misra A, Hirth J P, Hoagland R G, et al. Dislocation mechanisms and symmetric slip in rolled nano-scale metallic multilayers [J]. Acta Mater., 2004, 52: 2387
doi: 10.1016/j.actamat.2004.01.029
|
91 |
Mara N A, Tamayo T, Sergueeva A V, et al. The effects of decreasing layer thickness on the high temperature mechanical behavior of Cu/Nb nanoscale multilayers [J]. Thin Solid Films, 2006, 515: 3241
doi: 10.1016/j.tsf.2006.01.036
|
92 |
Mara N A, Misra A, Hoagland R G, et al. High-temperature mechanical behavior/microstructure correlation of Cu/Nb nanoscale multilayers [J]. Mater. Sci. Eng., 2008, A493: 274
|
93 |
Mara N A, Bhattacharyya D, Hoagland R G, et al. Tensile behavior of 40 nm Cu/Nb nanoscale multilayers [J]. Scr. Mater., 2008, 58: 874
doi: 10.1016/j.scriptamat.2008.01.005
|
94 |
Mara N A, Bhattacharyya D, Dickerson P, et al. Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites [J]. Appl. Phys. Lett., 2008, 92: 1765
|
95 |
Li N, Mara N A, Wang J, et al. Ex situ and in situ measurements of the shear strength of interfaces in metallic multilayers [J]. Scr. Mater., 2012, 67: 479
doi: 10.1016/j.scriptamat.2012.06.008
|
96 |
Han W Z, Misra A, Mara N A, et al. Role of interfaces in shock-induced plasticity in Cu/Nb nanolaminates [J]. Philos. Mag., 2011, 91: 4172
doi: 10.1080/14786435.2011.603706
|
97 |
Zhang R F, Beyerlein I J, Zheng S J, et al. Manipulating dislocation nucleation and shear resistance of bimetal interfaces by atomic steps [J]. Acta Mater., 2016, 113: 194
doi: 10.1016/j.actamat.2016.05.015
|
98 |
Kong X F, Beyerlein I J, Liu Z R, et al. Stronger and more failure-resistant with three-dimensional serrated bimetal interfaces [J]. Acta Mater., 2019, 166: 231
doi: 10.1016/j.actamat.2018.12.051
|
99 |
Han W Z, Carpenter J S, Wang J, et al. Atomic-level study of twin nucleation from face-centered-cubic/body-centered-cubic interfaces in nanolamellar composites [J]. Appl. Phys. Lett., 2012, 100: 011911
|
100 |
Saroukhani S, Warner D H. Investigating dislocation motion through a field of solutes with atomistic simulations and reaction rate theory [J]. Acta Mater., 2017, 128: 77
doi: 10.1016/j.actamat.2017.02.001
|
101 |
Wang C J, Yao B N, Liu Z R, et al. Effects of solutes on dislocation nucleation and interface sliding of bimetal semi-coherent interface [J]. Int. J. Plast., 2020, 131: 102725
doi: 10.1016/j.ijplas.2020.102725
|
102 |
Subramanian P R, Perepezko J H. The Ag-Cu (silver-copper) system [J]. J. Phase Equilib., 1993, 14: 62
doi: 10.1007/BF02652162
|
103 |
Borovikov V, Mendelev M I, King A H. Effects of solutes on dislocation nucleation from grain boundaries [J]. Int. J. Plast., 2017, 90: 146
doi: 10.1016/j.ijplas.2016.12.009
|
104 |
Larché F C, Cahn J W. Overview no. 41 the interactions of composition and stress in crystalline solids [J]. Acta Metall., 1985, 33: 331
doi: 10.1016/0001-6160(85)90077-X
|
105 |
Wu X B, You Y W, Kong X S, et al. First-principles determination of grain boundary strengthening in tungsten: Dependence on grain boundary structure and metallic radius of solute [J]. Acta Mater., 2016, 120: 315
doi: 10.1016/j.actamat.2016.08.048
|
106 |
Lenchuk O, Rohrer J, Albe K. Cohesive strength of zirconia/molybdenum interfaces and grain boundaries in molybdenum: A comparative study [J]. Acta Mater., 2017, 135: 150
doi: 10.1016/j.actamat.2017.05.070
|
107 |
Li X G, Cao L F, Zhang J Y, et al. Tuning the microstructure and mechanical properties of magnetron sputtered Cu-Cr thin films: The optimal Cr addition [J]. Acta Mater., 2018, 151: 87
doi: 10.1016/j.actamat.2018.03.044
|
108 |
Gola A, Gumbsch P, Pastewka L. Atomic-scale simulation of structure and mechanical properties of Cu1 - x Ag x |Ni multilayer systems [J]. Acta Mater., 2018, 150: 236
doi: 10.1016/j.actamat.2018.02.046
|
109 |
Guo W, Jägle E, Yao J H, et al. Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates [J]. Acta Mater., 2014, 80: 94
doi: 10.1016/j.actamat.2014.07.027
|
110 |
Fan Z, Xue S, Wang J, et al. Unusual size dependent strengthening mechanisms of Cu/amorphous CuNb multilayers [J]. Acta Mater., 2016, 120: 327
doi: 10.1016/j.actamat.2016.08.064
|
111 |
Cheng B, Trelewicz J R. Design of crystalline-amorphous nanolaminates using deformation mechanism maps [J]. Acta Mater., 2018, 153: 314
doi: 10.1016/j.actamat.2018.05.006
|
112 |
Bellou A, Overman C T, Zbib H M, et al. Strength and strain hardening behavior of Cu-based bilayers and trilayers [J]. Scr. Mater., 2011, 64: 641
doi: 10.1016/j.scriptamat.2010.12.009
|
113 |
Chen Y, Li N, Hoagland R G, et al. Effects of three-dimensional Cu/Nb interfaces on strengthening and shear banding in nanoscale metallic multilayers [J]. Acta Mater., 2020, 199: 593
doi: 10.1016/j.actamat.2020.08.019
|
114 |
Yang W F, Gong M Y, Yao J H, et al. Hardening induced by dislocation core spreading at disordered interface in Cu/Nb multilayers [J]. Scr. Mater., 2021, 200: 113917
doi: 10.1016/j.scriptamat.2021.113917
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|