Please wait a minute...
金属学报  2022, Vol. 58 Issue (6): 709-725    DOI: 10.11900/0412.1961.2021.00402
  综述 本期目录 | 过刊浏览 |
纳米金属层状材料强塑性的界面调控
郑士建1(), 闫哲1, 孔祥飞2, 张瑞丰3
1.河北工业大学 材料科学与工程学院 天津市材料层状复合与界面控制技术重点实验室 天津 300401
2.有研工程技术研究院有限公司 异质连接材料与技术研究所 北京 101407
3.北京航空航天大学 材料科学与工程学院 北京 100191
Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites
ZHENG Shijian1(), YAN Zhe1, KONG Xiangfei2, ZHANG Ruifeng3
1.Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
2.Institute of Heterogeneous Bonding Materials and Technologies, GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China
3.School of Materials Science and Engineering, Beihang University, Beijing 100191, China
引用本文:

郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
Shijian ZHENG, Zhe YAN, Xiangfei KONG, Ruifeng ZHANG. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. Acta Metall Sin, 2022, 58(6): 709-725.

全文: PDF(5349 KB)   HTML
摘要: 

纳米金属层状材料具有优异的力学性能、抗辐照损伤性能和热稳定性,在诸多领域有着广阔的应用前景。但强度的上升往往伴随着塑性的降低,如何有效地平衡层状材料强度与塑性之间的矛盾,仍是目前层状材料界面设计的巨大挑战。当层厚减小至纳米尺度,界面所占比重大幅上升,可动位错的密度急剧降低,界面成为塑性变形的源头。因此研究界面结构与其塑性变形行为之间的关系,是理解纳米层状金属材料微观变形机制及其对力学性能影响的关键。结合目前国内外纳米金属层状材料研究的最新进展,本文以常见层状材料体系为例,系统阐述了界面强化机制、界面结构、界面主导的强度及塑性变形行为和主要界面调控方法等关键科学问题,并对层状材料界面研究发展趋势进行了展望。

关键词 纳米金属层状材料界面位错孪生强度和塑性    
Abstract

Nanolayered metallic composites exhibit many extraordinary properties, such as high strength, high radiation damage resistance, and good thermal stability. Therefore, it has broad potential applications in many fields. However, similar to other nanocrystalline metallic materials, the strength-ductility trade-off in nanolayered metallic composites is significant. Therefore, how to effectively balance the strength and ductility of nanolayered metallic composites is still a huge challenge in interface engineering. When the layer thickness is reduced to the nanoscale, the proportion of the interface increases substantially, and the density of mobile dislocations in grains decreases sharply, at the same time interface becomes the main source of plastic deformation. Thus, research into the relationship between the interface structure and its plastic behaviors is the key to understanding the microdeformation mechanisms of nanolayered metallic composites and their influence on mechanical properties. Based on the latest research progress, taking typical nanolayered metallic composites as examples, the key points, such as strengthening mechanisms, interface structures, plastic behaviors, and interface design methods are disscussed, and the prospects for future research trends are proposed. This review provides theoretical guidance for developing high-strength and high-ductility nanolayered metallic composites via interface engineering.

Key wordsnanolayered metallic composite    interface    dislocation    twin    strength and plasticity
收稿日期: 2021-09-18     
ZTFLH:  TB331  
基金资助:国家自然科学基金项目(51771201);国家自然科学基金项目(52071124);河北省自然科学基金重点项目(E2021202135);天津市自然科学基金重点项目(20JCZDJC00440);东北大学轧制技术与连轧自动化国家重点实验室开放课题(2020RALKFKT002)
作者简介: 郑士建,男,1980年生,教授,博士
图1  不同组元层状材料硬度与单层厚度的关系[29,32,38,48]
图2  不同层厚下层状材料强度的位错机制示意图[13]
图3  物理气相沉积(PVD)法制备的Cu{111}//{110}Nb界面HRTEM像[57]
图4  Cu{111}//{110}Nb界面弛豫后的错配位错结构[61]
图5  Cu{111}//{111}Ni界面特征[34]
图6  弛豫后的Cu{111}//{111}Ni界面[63]
图7  Cu{111}//{0001}Zr界面特征[65,66]
图8  Mg{0001}//{110}Nb界面PS和B取向界面位错组态[68]
图9  Cu{111}//{111}Ag界面[44]
SystemCrystal structureLattice mismatch / %Orientation relationshipDislocation type
Cu/Nbfcc/bcc11.1Cu{111}//{110}NbCu〈110〉//〈111〉Nb2
Cu{111}//{110}NbCu〈110〉//〈100〉Nb7
Cu/Nifcc/fcc2.7Cu{001}//{001}NiCu [110]// [110]Ni1
Cu{111}//{111}NiCu [11¯0]// [11¯0]Ni3
Cu{111}//{111}NiCu [11¯0]// [1¯10]Ni3
Cu/Agfcc/fcc12.3Cu{111}//{111}AgCu [11¯0]// [11¯0]Ag3
Cu{111}//{111}AgCu [11¯0]// [1¯10]Ag3
Cu/Zrfcc/hcp20.7Cu{111}//{0001}ZrCu [1¯10]// [112¯0]Zr3
Mg/Nbhcp/bcc11.1Mg{0001}//{110}NbMg [21¯1¯0]// [111]Nb3
Mg{0001}//{110}NbMg [21¯1¯0]// [100]Nb3
表1  不同体系层状材料界面结构对比
图10  累积叠轧(ARB)法制备的Cu/Nb界面[71]
图11  位错-晶界交互作用的4种交互模式[76]
图12  K-S取向Cu{111}//{110}Nb界面对应的位错形核特征[79]
图13  Cu{111}//{111}Ni界面在剪切下的错合度分析图[69]
图14  冲击加载后的PVD Cu/Nb界面HRTEM像[96]
图15  包含原子台阶的K-S Cu{111}//{110}Nb界面模型[97]
图16  Cu1 - x Ag x//Ag界面模型[101]
图17  包含3D界面和CuNb非晶层的Cu/Nb层状材料TEM像[113,114]
1 Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Prog. Mater. Sci., 2005, 51: 427
doi: 10.1016/j.pmatsci.2005.08.003
2 Antolovich S D, Armstrong R W. Plastic strain localization in metals: Origins and consequences [J]. Prog. Mater. Sci., 2014, 59: 1
doi: 10.1016/j.pmatsci.2013.06.001
3 Zhang J Y, Lei S, Liu Y, et al. Length scale-dependent deformation behavior of nanolayered Cu/Zr micropillars [J]. Acta Mater., 2012, 60: 1610
doi: 10.1016/j.actamat.2011.12.001
4 Zhang J Y, Niu J J, Zhang X, et al. Tailoring nanostructured Cu/Cr multilayer films with enhanced hardness and tunable modulus [J]. Mater. Sci. Eng., 2012, A543: 139
5 Zhang J Y, Li J, Liang X Q, et al. Achieving optimum mechanical performance in metallic nanolayered Cu/X (X = Zr, Cr) micropillars [J]. Sci. Rep., 2014, 4: 4205
doi: 10.1038/srep04205 pmid: 24667702
6 Wu K, Zhang J Y, Li J, et al. Length-scale-dependent cracking and buckling behaviors of nanostructured Cu/Cr multilayer films on compliant substrates [J]. Acta Mater., 2015, 100: 344
doi: 10.1016/j.actamat.2015.08.055
7 Wu K, Yuan H Z, Liang X Q, et al. Size dependence of buckling strains of Cr films, Cu films and Cu/Cr multilayers on compliant substrates [J]. Scr. Mater., 2018, 146: 1
doi: 10.1016/j.scriptamat.2017.10.025
8 Zhang J Y, Zhang X, Wang R H, et al. Length-scale-dependent deformation and fracture behavior of Cu/X (X = Nb, Zr) multilayers: The constraining effects of the ductile phase on the brittle phase [J]. Acta Mater., 2011, 59: 7368
doi: 10.1016/j.actamat.2011.08.016
9 Malow T R, Koch C C. Grain growth in nanocrystalline iron prepared by mechanical attrition [J]. Acta Mater., 1997, 45: 2177
doi: 10.1016/S1359-6454(96)00300-X
10 Bai X M, Voter A F, Hoagland R G, et al. Efficient annealing of radiation damage near grain boundaries via interstitial emission [J]. Science, 2010, 327: 1631
doi: 10.1126/science.1183723
11 Avallone J T, Nizolek T J, Bales B B, et al. Creep resistance of bulk copper-niobium composites: An inverse effect of multilayer length scale [J]. Acta Mater., 2019, 176: 189
doi: 10.1016/j.actamat.2019.06.029
12 Yan Z, Liu Z R, Kong X F, et al. Effect of void morphology on void facilitated plasticity in irradiated Cu/Nb metallic nanolayered composites [J]. J. Nucl. Mater., 2022, 558: 153380
doi: 10.1016/j.jnucmat.2021.153380
13 Misra A, Hirth J P, Hoagland R G. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites [J]. Acta Mater., 2005, 53: 4817
doi: 10.1016/j.actamat.2005.06.025
14 Liu Y, Bufford D, Wang H, et al. Mechanical properties of highly textured Cu/Ni multilayers [J]. Acta Mater., 2011, 59: 1924
doi: 10.1016/j.actamat.2010.11.057
15 Zheng S J, Beyerlein I J, Carpenter J S, et al. High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces [J]. Nat. Commun., 2013, 4: 1696
doi: 10.1038/ncomms2651
16 Zeng L F, Gao R, Fang Q F, et al. High strength and thermal stability of bulk Cu/Ta nanolamellar multilayers fabricated by cross accumulative roll bonding [J]. Acta Mater., 2016, 110: 341
doi: 10.1016/j.actamat.2016.03.034
17 Misra A, Hoagland R G, Kung H. Thermal stability of self-supported nanolayered Cu/Nb films [J]. Philos. Mag., 2004, 84: 1021
doi: 10.1080/14786430310001659480
18 Misra A, Hoagland R G. Effects of elevated temperature annealing on the structure and hardness of copper/niobium nanolayered films [J]. J. Mater. Res., 2005, 20: 2046
doi: 10.1557/JMR.2005.0250
19 Carpenter J S, Zheng S J, Zhang R F, et al. Thermal stability of Cu-Nb nanolamellar composites fabricated via accumulative roll bonding [J]. Philos. Mag., 2013, 93: 718
doi: 10.1080/14786435.2012.731527
20 Han W Z, Cerreta E K, Mara N A, et al. Deformation and failure of shocked bulk Cu-Nb nanolaminates [J]. Acta Mater., 2014, 63: 150
doi: 10.1016/j.actamat.2013.10.019
21 Zhang R F, Germann T C, Liu X Y, et al. Layer size effect on the shock compression behavior of fcc-bcc nanolaminates [J]. Acta Mater., 2014, 79: 74
doi: 10.1016/j.actamat.2014.07.016
22 Zhang R F, Germann T C, Wang J, et al. Role of interface structure on the plastic response of Cu/Nb nanolaminates under shock compression: Non-equilibrium molecular dynamics simulations [J]. Scr. Mater., 2013, 68: 114
doi: 10.1016/j.scriptamat.2012.09.022
23 Demkowicz M J, Hoagland R G, Hirth J P. Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites [J]. Phys. Rev. Lett., 2008, 100: 136102
doi: 10.1103/PhysRevLett.100.136102
24 Demkowicz M J, Bellon P, Wirth B D. Atomic-scale design of radiation-tolerant nanocomposites [J]. MRS Bull., 2010, 35: 992
doi: 10.1557/mrs2010.704
25 Beyerlein I J, Caro A, Demkowicz M J, et al. Radiation damage tolerant nanomaterials [J]. Mater. Today, 2013, 16: 443
doi: 10.1016/j.mattod.2013.10.019
26 Yu K Y, Sun C, Chen Y, et al. Superior tolerance of Ag/Ni multilayers against Kr ion irradiation: An in situ study [J]. Philos. Mag., 2013, 93: 3547
doi: 10.1080/14786435.2013.815378
27 Kashinath A, Misra A, Demkowicz M J. Stable storage of helium in nanoscale platelets at semicoherent interfaces [J]. Phys. Rev. Lett., 2013, 110: 086101
28 Carpenter J S, Vogel S C, LeDonne J E, et al. Bulk texture evolution of Cu-Nb nanolamellar composites during accumulative roll bonding [J]. Acta Mater., 2012, 60: 1576
doi: 10.1016/j.actamat.2011.11.045
29 Spitzig W A, Pelton A R, Laabs F C. Characterization of the strength and microstructure of heavily cold worked Cu/Nb composites [J]. Acta Metall., 1987, 35: 2427
doi: 10.1016/0001-6160(87)90140-4
30 McKeown J, Misra A, Kung H, et al. Microstructures and strength of nanoscale Cu-Ag multilayers [J]. Scr. Mater., 2002, 46: 593
doi: 10.1016/S1359-6462(02)00036-2
31 Beyerlein I J, Mara N A, Bhattacharyya D, et al. Texture evolution via combined slip and deformation twinning in rolled silver-copper cast eutectic nanocomposite [J]. Int. J. Plast., 2011, 27: 121
doi: 10.1016/j.ijplas.2010.05.007
32 Labat S, Bocquet F, Gilles B, et al. Stresses and interfacial structure in Au-Ni and Ag-Cu metallic multilayers [J]. Scr. Mater., 2004, 50: 717
doi: 10.1016/j.scriptamat.2003.11.049
33 Misra A, Verdier M, Lu Y C, et al. Structure and mechanical properties of Cu-X (X = Nb, Cr, Ni) nanolayered composites [J]. Scr. Mater., 1998, 39: 555
doi: 10.1016/S1359-6462(98)00196-1
34 Zhu X Y, Liu X J, Zong R L, et al. Microstructure and mechanical properties of nanoscale Cu/Ni multilayers [J]. Mater. Sci. Eng., 2010, A527: 1243
35 Wang Y C, Liang F, Tan H F, et al. Enhancing fatigue strength of high-strength ultrafine-scale Cu/Ni laminated composites [J]. Mater. Sci. Eng., 2018, A714: 43
36 Tan H F, Zhang B, Luo X M, et al. High‐cycle fatigue properties of ultrafine‐scale Cu/Ni laminated composites  [J]. Adv. Eng. Mater., 2016, 18: 2003
doi: 10.1002/adem.201600120
37 Tran A S. Phase transformation and interface fracture of Cu/Ta multilayers: A molecular dynamics study [J]. Eng. Fract. Mech., 2020, 239: 107292
doi: 10.1016/j.engfracmech.2020.107292
38 Li J J, Lu W J, Zhang S Y, et al. Large strain synergetic material deformation enabled by hybrid nanolayer architectures [J]. Sci. Rep., 2017, 7: 11371
doi: 10.1038/s41598-017-11001-w
39 Zhang J Y, Liu Y, Chen J, et al. Mechanical properties of crystalline Cu/Zr and crystal-amorphous Cu/Cu-Zr multilayers [J]. Mater. Sci. Eng., 2012, A552: 392
40 Wu K, Wang Y Q, Yuan H Z, et al. Interfacial stress transfer mechanism of Cu-Zr amorphous films on polyimide substrates: Effect of deformation-induced devitrification [J]. J. Alloys Compd., 2019, 783: 841
doi: 10.1016/j.jallcom.2019.01.016
41 Mitchell T E, Lu Y C, Griffin A J, et al. Structure and mechanical properties of copper/niobium multilayers [J]. J. Am. Ceram. Soc., 1997, 80: 1673
doi: 10.1111/j.1151-2916.1997.tb03037.x
42 Zhang J Y, Zhang X, Liu G, et al. Scaling of the ductility with yield strength in nanostructured Cu/Cr multilayer films [J]. Scr. Mater., 2010, 63: 101
doi: 10.1016/j.scriptamat.2010.03.024
43 Fu E G, Li N, Misra A, et al. Mechanical properties of sputtered Cu/V and Al/Nb multilayer films [J]. Mater. Sci. Eng., 2008, A493: 283
44 Zheng S J, Wang J, Carpenter J S, et al. Plastic instability mechanisms in bimetallic nanolayered composites [J]. Acta Mater., 2014, 79: 282
doi: 10.1016/j.actamat.2014.07.017
45 Zheng S J, Shao S, Zhang J, et al. Adhesion of voids to bimetal interfaces with non-uniform energies [J]. Sci. Rep., 2015, 5: 1696
46 Ma X L, Huang C X, Moering J, et al. Mechanical properties of copper/bronze laminates: Role of interfaces [J]. Acta Mater., 2016, 116: 43
doi: 10.1016/j.actamat.2016.06.023
47 Ghalandari L, Moshksar M M. High-strength and high-conductive Cu/Ag multilayer produced by ARB [J]. J. Alloys Compd., 2010, 506: 172
doi: 10.1016/j.jallcom.2010.06.172
48 Sun Y F, Tsuji N, Fujii H, et al. Cu/Zr nanoscaled multi-stacks fabricated by accumulative roll bonding [J]. J. Alloys Compd., 2010, 504(): S443
doi: 10.1016/j.jallcom.2010.02.201
49 Lee S B, LeDonne J E, Lim S C V, et al. The heterophase interface character distribution of physical vapor-deposited and accumulative roll-bonded Cu-Nb multilayer composites [J]. Acta Mater., 2012, 60: 1747
doi: 10.1016/j.actamat.2011.12.007
50 Hansen B L, Carpenter J S, Sintay S D, et al. Modeling the texture evolution of Cu/Nb layered composites during rolling [J]. Int. J. Plast., 2013, 49: 71
doi: 10.1016/j.ijplas.2013.03.001
51 Beyerlein I J, Mayeur J R, McCabe R J, et al. Influence of slip and twinning on the crystallographic stability of bimetal interfaces in nanocomposites under deformation [J]. Acta Mater., 2014, 72: 137
doi: 10.1016/j.actamat.2014.03.041
52 Beyerlein I J, Mayeur J R, Zheng S J, et al. Emergence of stable interfaces under extreme plastic deformation [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 4386
doi: 10.1073/pnas.1319436111
53 Hall E O. The deformation and ageing of mild steel: III Discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
54 Petch N J. The cleavage strength of polycrystals [J]. J. Iron Steel Inst., 1953, 174: 25
55 Jankowski A F, Nyakiti L O. Anomalies in Hall-Petch strengthening for nanocrystalline Au-Cu alloys below 10nm grain size [J]. Surf. Coat. Technol., 2010, 205: 1398
doi: 10.1016/j.surfcoat.2010.07.106
56 Kim W J. Explanation for deviations from the Hall-Petch relation based on the creep behavior of an ultrafine-grained Mg-Li alloy with low diffusivity [J]. Scr. Mater., 2009, 61: 652
doi: 10.1016/j.scriptamat.2009.06.001
57 Li N, Wang J, Misra A, et al. Direct observations of confined layer slip in Cu/Nb multilayers [J]. Microsc. Microanal., 2012, 18: 1155
doi: 10.1017/S143192761200133X
58 Bufford D, Bi Z, Jia Q X, et al. Nanotwins and stacking faults in high-strength epitaxial Ag/Al multilayer films [J]. Appl. Phys. Lett., 2012, 101: 223112
doi: 10.1063/1.4768000
59 Rao S I, Hazzledine P M. Atomistic simulations of dislocation-interface interactions in the Cu-Ni multilayer system [J]. Philos. Mag., 2000, 80A: 2011
60 Koehler J S. Attempt to design a strong solid [J]. Phys. Rev., 1970, 2B: 547
61 Beyerlein I J, Wang J, Zhang R F. Interface-dependent nucleation in nanostructured layered composites [J]. APL Mater., 2013, 1: 32112
doi: 10.1063/1.4820424
62 Ratheneau G W. Report of the conference on defects in crystalline solids [J]. Acta Crystallogr., 1955, 8: 855
doi: 10.1107/S0365110X55002673
63 Shao S, Wang J, Misra A, et al. Spiral patterns of dislocations at nodes in (111) semi-coherent fcc interfaces [J]. Sci. Rep., 2013, 3: 2448
doi: 10.1038/srep02448
64 Shao S, Wang J, Misra A. Energy minimization mechanisms of semi-coherent interfaces [J]. J. Appl. Phys., 2014, 116: 23508
doi: 10.1063/1.4889927
65 Zhang J Y, Lei S, Niu J, et al. Intrinsic and extrinsic size effects on deformation in nanolayered Cu/Zr micropillars: From bulk-like to small-volume materials behavior [J]. Acta Mater., 2012, 60: 4054
doi: 10.1016/j.actamat.2012.03.056
66 Xiao Y Y, Kong X F, Yao B N, et al. Atomistic insight into the dislocation nucleation at crystalline/crystalline and crystalline/amorphous interfaces without full symmetry [J]. Acta Mater., 2019, 162: 255
doi: 10.1016/j.actamat.2018.09.068
67 Chen Y, Shao S, Liu X Y, et al. Misfit dislocation patterns of Mg-Nb interfaces [J]. Acta Mater., 2017, 126: 552
doi: 10.1016/j.actamat.2016.12.041
68 Shen X P, Yao B N, Liu Z R, et al. Mechanistic insights into interface-facilitated dislocation nucleation and phase transformation at semicoherent bimetal interfaces [J]. Int. J. Plast., 2021, 146: 103105
doi: 10.1016/j.ijplas.2021.103105
69 Chen X Y, Kong X F, Misra A, et al. Effect of dynamic evolution of misfit dislocation pattern on dislocation nucleation and shear sliding at semi-coherent bimetal interfaces [J]. Acta Mater., 2018, 143: 107
doi: 10.1016/j.actamat.2017.10.012
70 Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials—Development of the accumulative roll-bonding (ARB) process [J]. Acta Mater., 1999, 47: 579
doi: 10.1016/S1359-6454(98)00365-6
71 Zheng S J, Carpenter J S, Mccabe R J, et al. Engineering interface structures and thermal stabilities via SPD processing in bulk nanostructured metals [J]. Sci. Rep., 2014, 4: 4226
doi: 10.1038/srep04226
72 Zhang Y F, Li Q, Gong M, et al. Deformation behavior and phase transformation of nanotwinned Al/Ti multilayers [J]. Appl. Surf. Sci., 2020, 527: 146776
doi: 10.1016/j.apsusc.2020.146776
73 Shen Z, Wagoner R H, Clark W A T. Dislocation and grain boundary interactions in metals [J]. Acta Metall., 1988, 36: 3231
doi: 10.1016/0001-6160(88)90058-2
74 Lee T C, Robertson I M, Birnbaum H K. TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals [J]. Philos. Mag., 1990, 62A: 131
75 Lee T C, Robertson I M, Birnbaum H K. An in situ transmission electron microscope deformation study of the slip transfer mechanisms in metals [J]. Metall. Trans., 1990, 21A: 2437
76 Wang J. Atomistic simulations of dislocation pileup: Grain boundaries interaction [J]. JOM, 2015, 67: 1515
doi: 10.1007/s11837-015-1454-0
77 Spearot D E, Jacob K I, McDowell D L. Nucleation of dislocations from [001] bicrystal interfaces in aluminum [J]. Acta Mater., 2005, 53: 3579
doi: 10.1016/j.actamat.2005.04.012
78 Spearot D E, Jacob K I, McDowell D L. Dislocation nucleation from bicrystal interfaces with dissociated structure [J]. Int. J. Plast., 2007, 23: 143
doi: 10.1016/j.ijplas.2006.03.008
79 Zhang R F, Wang J, Beyerlein I J, et al. Dislocation nucleation mechanisms from fcc/bcc incoherent interfaces [J]. Scr. Mater., 2011, 65: 1022
doi: 10.1016/j.scriptamat.2011.09.008
80 Zhang R F, Wang J, Beyerlein I J, et al. Atomic-scale study of nucleation of dislocations from fcc-bcc interfaces [J]. Acta Mater., 2012, 60: 2855
doi: 10.1016/j.actamat.2012.01.050
81 Beyerlein I J, Wang J, Zhang R F. Mapping dislocation nucleation behavior from bimetal interfaces [J]. Acta Mater., 2013, 61: 7488
doi: 10.1016/j.actamat.2013.08.061
82 Mara N A, Beyerlein I J. Review: Effect of bimetal interface structure on the mechanical behavior of Cu-Nb fcc-bcc nanolayered composites [J]. J. Mater. Sci., 2014, 49: 6497
doi: 10.1007/s10853-014-8342-9
83 Wang J, Hoagland R G, Liu X Y, et al. The influence of interface shear strength on the glide dislocation-interface interactions [J]. Acta Mater., 2011, 59: 3164
doi: 10.1016/j.actamat.2011.01.056
84 Wang J, Hoagland R G, Hirth J P, et al. Atomistic simulations of the shear strength and sliding mechanisms of copper-niobium interfaces [J]. Acta Mater., 2008, 56: 3109
doi: 10.1016/j.actamat.2008.03.003
85 Demkowicz M J, Structure Thilly L., shear resistance and interaction with point defects of interfaces in Cu-Nb nanocomposites synthesized by severe plastic deformation [J]. Acta Mater., 2011, 59: 7744
doi: 10.1016/j.actamat.2011.09.004
86 Pan Q S, Zhou H F, Lu Q H, et al. History-independent cyclic response of nanotwinned metals [J]. Nature, 2017, 551: 214
doi: 10.1038/nature24266
87 Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
doi: 10.1126/science.1092905
88 Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper [J]. Science, 2009, 323: 607
doi: 10.1126/science.1167641 pmid: 19179523
89 McCabe R J, Beyerlein I J, Carpenter J S, et al. The critical role of grain orientation and applied stress in nanoscale twinning [J]. Nat. Commun., 2014, 5: 3806
doi: 10.1038/ncomms4806
90 Misra A, Hirth J P, Hoagland R G, et al. Dislocation mechanisms and symmetric slip in rolled nano-scale metallic multilayers [J]. Acta Mater., 2004, 52: 2387
doi: 10.1016/j.actamat.2004.01.029
91 Mara N A, Tamayo T, Sergueeva A V, et al. The effects of decreasing layer thickness on the high temperature mechanical behavior of Cu/Nb nanoscale multilayers [J]. Thin Solid Films, 2006, 515: 3241
doi: 10.1016/j.tsf.2006.01.036
92 Mara N A, Misra A, Hoagland R G, et al. High-temperature mechanical behavior/microstructure correlation of Cu/Nb nanoscale multilayers [J]. Mater. Sci. Eng., 2008, A493: 274
93 Mara N A, Bhattacharyya D, Hoagland R G, et al. Tensile behavior of 40 nm Cu/Nb nanoscale multilayers [J]. Scr. Mater., 2008, 58: 874
doi: 10.1016/j.scriptamat.2008.01.005
94 Mara N A, Bhattacharyya D, Dickerson P, et al. Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites [J]. Appl. Phys. Lett., 2008, 92: 1765
95 Li N, Mara N A, Wang J, et al. Ex situ and in situ measurements of the shear strength of interfaces in metallic multilayers [J]. Scr. Mater., 2012, 67: 479
doi: 10.1016/j.scriptamat.2012.06.008
96 Han W Z, Misra A, Mara N A, et al. Role of interfaces in shock-induced plasticity in Cu/Nb nanolaminates [J]. Philos. Mag., 2011, 91: 4172
doi: 10.1080/14786435.2011.603706
97 Zhang R F, Beyerlein I J, Zheng S J, et al. Manipulating dislocation nucleation and shear resistance of bimetal interfaces by atomic steps [J]. Acta Mater., 2016, 113: 194
doi: 10.1016/j.actamat.2016.05.015
98 Kong X F, Beyerlein I J, Liu Z R, et al. Stronger and more failure-resistant with three-dimensional serrated bimetal interfaces [J]. Acta Mater., 2019, 166: 231
doi: 10.1016/j.actamat.2018.12.051
99 Han W Z, Carpenter J S, Wang J, et al. Atomic-level study of twin nucleation from face-centered-cubic/body-centered-cubic interfaces in nanolamellar composites [J]. Appl. Phys. Lett., 2012, 100: 011911
100 Saroukhani S, Warner D H. Investigating dislocation motion through a field of solutes with atomistic simulations and reaction rate theory [J]. Acta Mater., 2017, 128: 77
doi: 10.1016/j.actamat.2017.02.001
101 Wang C J, Yao B N, Liu Z R, et al. Effects of solutes on dislocation nucleation and interface sliding of bimetal semi-coherent interface [J]. Int. J. Plast., 2020, 131: 102725
doi: 10.1016/j.ijplas.2020.102725
102 Subramanian P R, Perepezko J H. The Ag-Cu (silver-copper) system [J]. J. Phase Equilib., 1993, 14: 62
doi: 10.1007/BF02652162
103 Borovikov V, Mendelev M I, King A H. Effects of solutes on dislocation nucleation from grain boundaries [J]. Int. J. Plast., 2017, 90: 146
doi: 10.1016/j.ijplas.2016.12.009
104 Larché F C, Cahn J W. Overview no. 41 the interactions of composition and stress in crystalline solids [J]. Acta Metall., 1985, 33: 331
doi: 10.1016/0001-6160(85)90077-X
105 Wu X B, You Y W, Kong X S, et al. First-principles determination of grain boundary strengthening in tungsten: Dependence on grain boundary structure and metallic radius of solute [J]. Acta Mater., 2016, 120: 315
doi: 10.1016/j.actamat.2016.08.048
106 Lenchuk O, Rohrer J, Albe K. Cohesive strength of zirconia/molybdenum interfaces and grain boundaries in molybdenum: A comparative study [J]. Acta Mater., 2017, 135: 150
doi: 10.1016/j.actamat.2017.05.070
107 Li X G, Cao L F, Zhang J Y, et al. Tuning the microstructure and mechanical properties of magnetron sputtered Cu-Cr thin films: The optimal Cr addition [J]. Acta Mater., 2018, 151: 87
doi: 10.1016/j.actamat.2018.03.044
108 Gola A, Gumbsch P, Pastewka L. Atomic-scale simulation of structure and mechanical properties of Cu1 - x Ag x |Ni multilayer systems [J]. Acta Mater., 2018, 150: 236
doi: 10.1016/j.actamat.2018.02.046
109 Guo W, Jägle E, Yao J H, et al. Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates [J]. Acta Mater., 2014, 80: 94
doi: 10.1016/j.actamat.2014.07.027
110 Fan Z, Xue S, Wang J, et al. Unusual size dependent strengthening mechanisms of Cu/amorphous CuNb multilayers [J]. Acta Mater., 2016, 120: 327
doi: 10.1016/j.actamat.2016.08.064
111 Cheng B, Trelewicz J R. Design of crystalline-amorphous nanolaminates using deformation mechanism maps [J]. Acta Mater., 2018, 153: 314
doi: 10.1016/j.actamat.2018.05.006
112 Bellou A, Overman C T, Zbib H M, et al. Strength and strain hardening behavior of Cu-based bilayers and trilayers [J]. Scr. Mater., 2011, 64: 641
doi: 10.1016/j.scriptamat.2010.12.009
113 Chen Y, Li N, Hoagland R G, et al. Effects of three-dimensional Cu/Nb interfaces on strengthening and shear banding in nanoscale metallic multilayers [J]. Acta Mater., 2020, 199: 593
doi: 10.1016/j.actamat.2020.08.019
114 Yang W F, Gong M Y, Yao J H, et al. Hardening induced by dislocation core spreading at disordered interface in Cu/Nb multilayers [J]. Scr. Mater., 2021, 200: 113917
doi: 10.1016/j.scriptamat.2021.113917
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[4] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[5] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[6] 李谦, 孙璇, 罗群, 刘斌, 吴成章, 潘复生. 镁基材料中储氢相及其界面与储氢性能的调控[J]. 金属学报, 2023, 59(3): 349-370.
[7] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[8] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[9] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[10] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[11] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[12] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[13] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[14] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[15] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.