Please wait a minute...
金属学报  2023, Vol. 59 Issue (1): 1-15    DOI: 10.11900/0412.1961.2022.00026
  综述 本期目录 | 过刊浏览 |
金属激光增材制造材料设计研究进展
宋波, 张金良, 章媛洁, 胡凯, 方儒轩, 姜鑫, 张莘茹, 吴祖胜, 史玉升()
华中科技大学 材料成形与模具技术国家重点实验室 武汉 430074
Research Progress of Materials Design for Metal Laser Additive Manufacturing
SONG Bo, ZHANG Jinliang, ZHANG Yuanjie, HU Kai, FANG Ruxuan, JIANG Xin, ZHANG Xinru, WU Zusheng, SHI Yusheng()
State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
引用本文:

宋波, 张金良, 章媛洁, 胡凯, 方儒轩, 姜鑫, 张莘茹, 吴祖胜, 史玉升. 金属激光增材制造材料设计研究进展[J]. 金属学报, 2023, 59(1): 1-15.
Bo SONG, Jinliang ZHANG, Yuanjie ZHANG, Kai HU, Ruxuan FANG, Xin JIANG, Xinru ZHANG, Zusheng WU, Yusheng SHI. Research Progress of Materials Design for Metal Laser Additive Manufacturing[J]. Acta Metall Sin, 2023, 59(1): 1-15.

全文: PDF(3014 KB)   HTML
摘要: 

激光增材制造被公认为是解决个性化、复杂化金属构件整体成形难题的有效技术手段。现有金属增材制造的研究主要从传统合金牌号出发,但基于平衡凝固过程设计的传统合金成分难以满足增材制造的非平衡冶金动力学特点,往往面临高裂纹敏感性、低韧低疲劳、各向异性等共性问题。因此,需要开展面向激光增材制造的新型材料成分设计研究,充分挖掘增材制造非平衡凝固特性的潜在优势与价值。本文综述了铝合金、钛合金、铁基合金、镁合金等不同材料现有合金牌号增材制造的技术瓶颈,以及面向增材制造的材料创新设计方法与新型合金及其复合材料发展的研究进展。最后提出了金属增材制造材料设计的未来发展趋势。

关键词 激光增材制造金属材料设计新材料    
Abstract

Laser additive manufacturing is widely recognized to be an effective method to form complicated and custom metallic components. The existing research on metal additive manufacturing utilizes traditional alloy grades, which are designed based on the assumption that solidification occurs at equilibrium; thus, these materials are not well suited to the nonequilibrium metallurgical dynamics that are present in additive manufacturing techniques. Common issues, such as high crack susceptibility, low toughness, and low fatigue capability, as well as anisotropy, frequently occur during the fabrication of additively manufactured metallic parts. It is therefore necessary to conduct research on the design of new materials designed specifically for laser additive manufacturing in order to fully realize the potential advantages and value of the ultrafast solidification conditions. In this article, the technical bottlenecks, material design methods, and the development of new materials that are applicable to laser additively manufactured metal materials are reviewed; these materials include aluminum alloys, titanium alloys, iron-based alloys, and magnesium alloys. Finally, the potential future direction of research related to laser metal additive manufacturing is discussed.

Key wordslaser additive manufacturing    metal    material design    new material
收稿日期: 2022-01-19     
ZTFLH:  TG14  
基金资助:国家自然科学基金项目(51922044);中国博士后科学基金面上项目(2021M701293);中国博士后科学基金面上项目(2021M690061)
作者简介: 宋 波,男,1984年生,教授,博士
图1  激光增材制造(LAM)原理示意图[10]
图2  Ti改性2xxx铝合金的相图、裂纹敏感因子、生长抑制因子、反极图和晶粒尺寸分布[17]
图3  选区激光熔化(SLM)成形钛合金拉伸性能[27,28]
图4  SLM成形(TiB + TiC)/Ti复合材料微观结构演化示意图[33]
图5  LCD制备的Fe19Ni5Ti试样及其拉伸测试[38]
图6  SLM成形不锈钢和铁基非晶/不锈钢材料微观组织及腐蚀性能[39,40]
图7  表面氧化物形成示意图[76]
图8  NbMoTaX合金的凝固路径和裂纹敏感性指数[88]
图9  非晶合金的连续冷却转变曲线示意图及制备的铁基非晶合金结构[101]
图10  SLM成形铁基非晶复合材料的力学性能[102]
1 Shi Y S. The industrial application and industrialization development of 3D printing technology [J]. Mach. Des. Manuf. Eng., 2016, 45(2): 11
1 史玉升. 3D打印技术的工业应用及产业化发展 [J]. 机械设计与制造工程, 2016, 45(2): 11
2 Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2690
2 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690
doi: 10.7527/S1000-6893.2014.0174
3 Yap C Y, Chua C K, Dong Z L, et al. Review of selective laser melting: Materials and applications [J]. Appl. Phys. Rev., 2015, 2: 041101
4 Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: Materials, processes and mechanisms [J]. Int. Mater. Rev., 2012, 57: 133
doi: 10.1179/1743280411Y.0000000014
5 Han J. Research on anisotropy of Ti6Al4V alloy fabricated by selective laser melting [D]. Wuhan: Huazhong University of Science and Technology, 2016
5 韩 婕. 激光选区熔化成形Ti6Al4V合金的各向异性研究 [D]. 武汉: 华中科技大学, 2016
6 Zhang J L, Song B, Wei Q S, et al. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends [J]. J. Mater. Sci. Technol., 2019, 35: 270
doi: 10.1016/j.jmst.2018.09.004
7 Li W, Liu J, Zhou Y, et al. Effect of substrate preheating on the texture, phase and nanohardness of a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting [J]. Scr. Mater., 2016, 118: 13
doi: 10.1016/j.scriptamat.2016.02.022
8 Jia Q B, Du D D. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties [J]. J. Alloys Compd., 2014, 585: 713-721
doi: 10.1016/j.jallcom.2013.09.171
9 Yang Q, Lu Z L, Huang F X, et al. Research on status and development trend of laser additive manufacturing [J]. Aeronaut. Manuf. Technol., 2016, (12): 26
9 杨 强, 鲁中良, 黄福享 等. 激光增材制造技术的研究现状及发展趋势 [J]. 航空制造技术, 2016, (12): 26
10 Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
11 Zhang J L, Yuan W H, Song B, et al. Towards understanding metallurgical defect formation of selective laser melted wrought aluminum alloys [J]. Adv. Powder Mater., 2022, 1: 100035
12 Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
doi: 10.1038/nature23894
13 Zhang H, Zhu H H, Nie X J, et al. Effect of Zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy [J]. Scr. Mater., 2017, 134: 6
doi: 10.1016/j.scriptamat.2017.02.036
14 Nie X J, Zhang H, Zhu H H, et al. Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted Zr modified Al-4.24Cu-1.97Mg-0.56Mn alloys [J]. J. Alloys Compd., 2018, 764: 977
doi: 10.1016/j.jallcom.2018.06.032
15 Li R D, Wang M B, Li Z M, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms [J]. Acta Mater., 2020, 193: 83
doi: 10.1016/j.actamat.2020.03.060
16 Jia Q B, Rometsch P, Kürnsteiner P, et al. Selective laser melting of a high strength Al-Mn-Sc alloy: Alloy design and strengthening mechanisms [J]. Acta Mater., 2019, 171: 108
doi: 10.1016/j.actamat.2019.04.014
17 Zhang J L, Gao J B, Song B, et al. A novel crack-free Ti-modified Al-Cu-Mg alloy designed for selective laser melting [J]. Addit. Manuf., 2021, 38: 101829
18 Gu D D, Wang H Q, Dai D H, et al. Rapid fabrication of Al-based bulk-form nanocomposites with novel reinforcement and enhanced performance by selective laser melting [J]. Scr. Mater., 2015, 96: 25
doi: 10.1016/j.scriptamat.2014.10.011
19 Gu D D, Rao X W, Dai D H, et al. Laser additive manufacturing of carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites: Processing optimization, microstructure evolution and mechanical properties [J]. Addit. Manuf., 2019, 29: 100801
20 Wang M, Song B, Wei Q S, et al. Improved mechanical properties of AlSi7Mg/nano-SiCp composites fabricated by selective laser melting [J]. J. Alloys Compd., 2019, 810: 151926
doi: 10.1016/j.jallcom.2019.151926
21 Tan H, Hao D P, Al-Hamdani K, et al. Direct metal deposition of TiB2/AlSi10Mg composites using satellited powders [J]. Mater. Lett., 2018, 214: 123
doi: 10.1016/j.matlet.2017.11.121
22 Li X P, Ji G, Chen Z, et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility [J]. Acta Mater., 2017, 129: 183
doi: 10.1016/j.actamat.2017.02.062
23 Gao C F, Xiao Z Y, Liu Z Q, et al. Selective laser melting of nano-TiN modified AlSi10Mg composite powder with low laser reflectivity [J]. Mater. Lett., 2019, 236: 362
doi: 10.1016/j.matlet.2018.10.126
24 Gao C, Wang Z, Xiao Z, et al. Selective laser melting of TiN nanoparticle-reinforced AlSi10Mg composite: Microstructural, interfacial, and mechanical properties [J]. J. Mater. Process. Technol., 2020, 281: 116618
doi: 10.1016/j.jmatprotec.2020.116618
25 Liu S Y, Shin Y C. Additive manufacturing of Ti6Al4V alloy: A review [J]. Mater. Des., 2019, 164: 107552
doi: 10.1016/j.matdes.2018.107552
26 Kruth J P, Mercelis P, Van Vaerenbergh J, et al. Binding mechanisms in selective laser sintering and selective laser melting [J]. Rapid Prototyp. J., 2005, 11: 26
doi: 10.1108/13552540510573365
27 Shipley H, McDonnell D, Culleton M, et al. Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review [J]. Int. J. Mach. Tools Manuf., 2018, 128: 1
doi: 10.1016/j.ijmachtools.2018.01.003
28 Zhang D Y, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys [J]. Nature, 2019, 576: 91
doi: 10.1038/s41586-019-1783-1
29 Zhang J L, Song B, Cai C, et al. Tailorable microstructure and mechanical properties of selective laser melted TiB/Ti-6Al-4V composite by heat treatment [J]. Adv. Powder Mater., 2022, 1: 100010
30 Attar H, Bönisch M, Calin M, et al. Selective laser melting of in situ titanium-titanium boride composites: Processing, microstructure and mechanical properties [J]. Acta Mater., 2014, 76: 13
doi: 10.1016/j.actamat.2014.05.022
31 Zhang J L, Song B, Yang L, et al. Microstructure evolution and mechanical properties of TiB/Ti6Al4V gradient-material lattice structure fabricated by laser powder bed fusion [J]. Composites, 2020, 202B: 108417
32 Gu D D, Meng G B, Li C, et al. Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement [J]. Scr. Mater., 2012, 67: 185
doi: 10.1016/j.scriptamat.2012.04.013
33 Han C J, Babicheva R, Chua J D Q, et al. Microstructure and mechanical properties of (TiB + TiC)/Ti composites fabricated in situ via selective laser melting of Ti and B4C powders [J]. Addit. Manuf., 2020, 36: 101466
34 Zhang W X. Research on the key technologies for selective laser melting process [D]. Wuhan: Huazhong University of Science and Technology, 2008
34 章文献. 选择性激光熔化快速成形关键技术研究 [D]. 武汉: 华中科技大学, 2008
35 Zhang S. Research on the forming processes and properties in selective laser melting of medical alloy powders [D]. Wuhan: Huazhong University of Science and Technology, 2014
35 张 升. 医用合金粉末激光选区熔化成形工艺与性能研究 [D]. 武汉: 华中科技大学, 2014
36 Zhao X. Fundamental research on the microstructure and properties evolution of tool steels fabricated by seletive laser melting [D]. Wuhan: Huazhong University of Science and Technology, 2016
36 赵 晓. 激光选区熔化成形模具钢材料的组织与性能演变基础研究 [D]. 武汉: 华中科技大学, 2016
37 Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021 pmid: 29115290
38 Kürnsteiner P, Wilms M B, Weisheit A, et al. High-strength Damascus steel by additive manufacturing [J]. Nature, 2020, 582: 515
doi: 10.1038/s41586-020-2409-3
39 Zhang Y J, Zhang J L, Yan Q, et al. Amorphous alloy strengthened stainless steel manufactured by selective laser melting: Enhanced strength and improved corrosion resistance [J]. Scr. Mater., 2018, 148: 20
doi: 10.1016/j.scriptamat.2018.01.016
40 Zhang Y J, Song B, Ming J, et al. Corrosion mechanism of amorphous alloy strengthened stainless steel composite fabricated by selective laser melting [J]. Corros. Sci., 2020, 163: 108241
doi: 10.1016/j.corsci.2019.108241
41 Grzesiak D, AlMangour B, Krawczyk M, et al. Selective laser melting of TiC reinforced stainless steel nanocomposites: Mechanical behaviour at elevated temperatures [J]. Mater. Lett., 2019, 256: 126633
doi: 10.1016/j.matlet.2019.126633
42 Liu Y F, Tang M K, Hu Q, et al. Densification behavior, microstructural evolution, and mechanical properties of TiC/AISI420 stainless steel composites fabricated by selective laser melting [J]. Mater. Des., 2019, 187: 108381
doi: 10.1016/j.matdes.2019.108381
43 Zhao S M, Shen X F, Yang J L, et al. Densification behavior and mechanical properties of nanocrystalline TiC reinforced 316L stainless steel composite parts fabricated by selective laser melting [J]. Opt. Laser Technol., 2018, 103: 239
doi: 10.1016/j.optlastec.2018.01.005
44 Zhao X, Wei Q S, Gao N, et al. Rapid fabrication of TiN/AISI 420 stainless steel composite by selective laser melting additive manufacturing [J]. J. Mater. Process. Technol., 2019, 270: 8
doi: 10.1016/j.jmatprotec.2019.01.028
45 Salman O O, Gammer C, Eckert J, et al. Selective laser melting of 316L stainless steel: Influence of TiB2 addition on microstructure and mechanical properties [J]. Mater. Today Commun., 2019, 21: 100615
46 Hu H, Wen S F, Duan L C, et al. Enhanced corrosion behavior of selective laser melting S136 mould steel reinforced with nano-TiB2 [J]. Opt. Laser Technol., 2019, 119: 105588
doi: 10.1016/j.optlastec.2019.105588
47 Wen S F, Hu H, Zhou Y, et al. Enhanced hardness and wear property of S136 mould steel with nano-TiB2 composites fabricated by selective laser melting method [J]. Appl. Surf. Sci., 2018, 457: 11
doi: 10.1016/j.apsusc.2018.06.220
48 Song B, Dong S J, Coddet C. Rapid in situ fabrication of Fe/SiC bulk nanocomposites by selective laser melting directly from a mixed powder of microsized Fe and SiC [J]. Scr. Mater., 2014, 75: 90
doi: 10.1016/j.scriptamat.2013.11.031
49 Wu C L, Zhang S, Zhang C H, et al. Effects of SiC content on phase evolution and corrosion behavior of SiC-reinforced 316L stainless steel matrix composites by laser melting deposition [J]. Opt. Laser Technol., 2019, 115: 134
doi: 10.1016/j.optlastec.2019.02.029
50 Song B, Wang Z W, Yan Q, et al. Integral method of preparation and fabrication of metal matrix composite: Selective laser melting of in-situ nano/submicro-sized carbides reinforced iron matrix composites [J]. Mater. Sci. Eng., 2017, A707: 478
51 Wen S F, Chen K Y, Li W, et al. Selective laser melting of reduced graphene oxide/S136 metal matrix composites with tailored microstructures and mechanical properties [J]. Mater. Des., 2019, 175: 107811
doi: 10.1016/j.matdes.2019.107811
52 Zhou Y, Gui Q Y, Yu W Y, et al. Interfacial diffusion printing: An efficient manufacturing technique for artificial tubular grafts [J]. ACS Biomater. Sci. Eng., 2019, 5: 6311
doi: 10.1021/acsbiomaterials.9b01293
53 Taltavull C, Shi Z, Torres B, et al. Influence of the chloride ion concentration on the corrosion of high-purity Mg, ZE41 and AZ91 in buffered Hank's solution [J]. J. Mater. Sci. Mater. Med., 2014, 25: 329
doi: 10.1007/s10856-013-5087-y
54 Zhang W N, Wang L Z, Feng Z X, et al. Research progress on selective laser melting (SLM) of magnesium alloys: A review [J]. Optik, 2020, 207: 163842
doi: 10.1016/j.ijleo.2019.163842
55 Gunduz K O, Oter Z C, Tarakci M, et al. Plasma electrolytic oxidation of binary Mg-Al and Mg-Zn alloys [J]. Surf. Coat. Technol., 2017, 323: 72
doi: 10.1016/j.surfcoat.2016.08.040
56 Tan Q Y, Mo N, Lin C L, et al. Generalisation of the oxide reinforcement model for the high oxidation resistance of some Mg alloys micro-alloyed with Be [J]. Corros. Sci., 2019, 147: 357
doi: 10.1016/j.corsci.2018.12.001
57 Lee S J, Do L H T. Effects of copper additive on micro-arc oxidation coating of LZ91 magnesium-lithium alloy [J]. Surf. Coat. Technol., 2016, 307: 781
doi: 10.1016/j.surfcoat.2016.10.008
58 Shuai C J, He C X, Feng P, et al. Biodegradation mechanisms of selective laser-melted Mg-xAl-Zn alloy: Grain size and intermetallic phase [J]. Virtual Phys. Prototy., 2018, 13: 59
doi: 10.1080/17452759.2017.1408918
59 Zhou M R, Morisada Y, Fujii H. Effect of Ca addition on the microstructure and the mechanical properties of asymmetric double-sided friction stir welded AZ61 magnesium alloy [J]. J. Magnes. Alloy., 2020, 8: 91
doi: 10.1016/j.jma.2020.02.001
60 Yang J, Peng J, Nyberg E A, et al. Effect of Ca addition on the corrosion behavior of Mg-Al-Mn alloy [J]. Appl. Surf. Sci., 2016, 369: 92
doi: 10.1016/j.apsusc.2016.01.283
61 Baek S M, Kang J S, Shin H J, et al. Role of alloyed Y in improving the corrosion resistance of extruded Mg-Al-Ca-based alloy [J]. Corros. Sci., 2017, 118: 227
doi: 10.1016/j.corsci.2017.01.022
62 Shuai C J, He C X, Xu L, et al. Wrapping effect of secondary phases on the grains: Increased corrosion resistance of Mg-Al alloys [J]. Virtual Phys. Prototy., 2018, 13: 292
doi: 10.1080/17452759.2018.1479969
63 Zhang M, Chen C J, Liu C, et al. Study on porous Mg-Zn-Zr ZK61 alloys produced by laser additive manufacturing [J]. Metals, 2018, 8: 635
doi: 10.3390/met8080635
64 Long T, Zhang X H, Huang Q L, et al. Novel Mg-based alloys by selective laser melting for biomedical applications: Microstructure evolution, microhardness and in vitro degradation behaviour [J]. Virtual Phys. Prototy., 2018, 13: 71
doi: 10.1080/17452759.2017.1411662
65 Haberland C, Elahinia M, Walker J M, et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing [J]. Smart Mater. Struct., 2014, 23: 104002
doi: 10.1088/0964-1726/23/10/104002
66 Haberland C, Meier H, Frenzel J. On the properties of Ni-rich NiTi shape memory parts produced by selective laser melting [A]. ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems [C]. Stone Mountain, GA, USA: American Society of Mechanical Engineers, 2012: 97
67 Hamilton R F, Palmer T A, Bimber B A. Spatial characterization of the thermal-induced phase transformation throughout as-deposited additive manufactured NiTi bulk builds [J]. Scr. Mater., 2015, 101: 56
doi: 10.1016/j.scriptamat.2015.01.018
68 Habijan T, Haberland C, Meier H, et al. The biocompatibility of dense and porous nickel-titanium produced by selective laser melting [J]. Mater. Sci. Eng., 2013, C33: 419
69 Tan C L, Li S, Essa K, et al. Laser powder bed fusion of Ti-rich TiNi lattice structures: Process optimisation, geometrical integrity, and phase transformations [J]. Int. J. Mach. Tools Manuf., 2019, 141: 19
doi: 10.1016/j.ijmachtools.2019.04.002
70 Xue L, Atli K C, Picak S, et al. Controlling martensitic transformation characteristics in defect-free NiTi shape memory alloys fabricated using laser powder bed fusion and a process optimization framework [J]. Acta Mater., 2021, 215: 117017
doi: 10.1016/j.actamat.2021.117017
71 Zhang Q Q, Hao S J, Liu Y T, et al. The microstructure of a selective laser melting (SLM)-fabricated NiTi shape memory alloy with superior tensile property and shape memory recoverability [J]. Appl. Mater. Today, 2020, 19: 100547
72 Lu B W, Cui X F, Ma W Y, et al. Promoting the heterogeneous nucleation and the functional properties of directed energy deposited NiTi alloy by addition of La2O3 [J]. Addit. Manuf., 2020, 33: 101150
73 Li S. Fundamental research on the microstructure and properties evolution of nickel-based superalloy fabricated by selective laser melting [D]. Wuhan: Huazhong University of Science and Technology, 2017
73 李 帅. 激光选区熔化成形镍基高温合金的组织与性能演变基础研究 [D]. 武汉: 华中科技大学, 2017
74 Kakehi K, Banoth S, Kuo Y L, et al. Effect of yttrium addition on creep properties of a Ni-base superalloy built up by selective laser melting [J]. Scr. Mater., 2020, 183: 71
doi: 10.1016/j.scriptamat.2020.03.014
75 Wang H L. Effect of element Re and W on microstructure and properties of selective laser melting GH4169 nickel-based alloy powder [D]. Taiyuan: North University of China, 2015
75 王海丽. 元素Re和W对选区激光熔化GH4169镍基合金组织及性能的影响 [D]. 太原: 中北大学, 2015
76 Chen L, Sun Y Z, Li L, et al. Effect of heat treatment on the microstructure and high temperature oxidation behavior of TiC/Inconel 625 nanocomposites fabricated by selective laser melting [J]. Corros. Sci., 2020, 169: 108606
doi: 10.1016/j.corsci.2020.108606
77 Li X F, Yi D H, Liu B, et al. Graphene-strengthened Inconel 625 alloy fabricated by selective laser melting [J]. Mater. Sci. Eng., 2020, A798: 140099
78 Zhang B C, Bi G J, Nai S, et al. Microhardness and microstructure evolution of TiB2 reinforced Inconel 625/TiB2 composite produced by selective laser melting [J]. Opt. Laser Technol., 2016, 80: 186
doi: 10.1016/j.optlastec.2016.01.010
79 Wang W Q, Wang S Y, Chen F, et al. Microstructure and mechanical properties of TiN/Inconel 718 composites fabricated by selective laser melting [J]. Acta. Metall. Sin., 2021, 57: 1017
doi: 10.11900/0412.1961.2020.00485
79 王文权, 王苏煜, 陈飞 等. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能 [J]. 金属学报, 2021, 57: 1017
doi: 10.11900/0412.1961.2020.00485
80 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.200300567
81 Cantor B., Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
82 Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
doi: 10.1016/j.actamat.2013.04.058
83 Huo W Y, Liu X D, Tan S Y, et al. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films [J]. Appl. Surf. Sci., 2018, 439: 222
doi: 10.1016/j.apsusc.2018.01.050
84 Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of Al x Co1.5CrFeNi1.5Ti y high-entropy alloys [J]. Acta Mater., 2011, 59: 6308
doi: 10.1016/j.actamat.2011.06.041
85 Li R D, Niu P D, Yuan T C, et al. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property [J]. J. Alloys Compd., 2018, 746: 125
doi: 10.1016/j.jallcom.2018.02.298
86 Fujieda T, Chen M C, Shiratori H, et al. Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive manufactured using selective laser melting [J]. Addit. Manuf., 2019, 25: 412
87 Karlsson D, Marshal A, Johansson F, et al. Elemental segregation in an AlCoCrFeNi high-entropy alloy—A comparison between selective laser melting and induction melting [J]. J. Alloys Compd., 2019, 784: 195
doi: 10.1016/j.jallcom.2018.12.267
88 Zhang H, Zhao Y Z, Cai J L, et al. High-strength NbMoTaX refractory high-entropy alloy with low stacking fault energy eutectic phase via laser additive manufacturing [J]. Mater. Des., 2021, 201: 109462
doi: 10.1016/j.matdes.2021.109462
89 Sun Z J, Tan X P, Wang C C, et al. Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: Example of an Al x CoCrFeNi high-entropy alloy [J]. Acta Mater., 2021, 204: 116505
doi: 10.1016/j.actamat.2020.116505
90 Luo S C, Gao P, Yu H C, et al. Selective laser melting of an equiatomic AlCrCuFeNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical behavior [J]. J. Alloys Compd., 2019, 771: 387
doi: 10.1016/j.jallcom.2018.08.290
91 Luo S C, Zhao C Y, Su Y, et al. Selective laser melting of dual phase AlCrCuFeNi x high entropy alloys: Formability, heterogeneous microstructures and deformation mechanisms [J]. Addit. Manuf., 2020, 31: 100925
92 Wang Y, Li R D, Niu P D, et al. Microstructures and properties of equimolar AlCoCrCuFeNi high-entropy alloy additively manufactured by selective laser melting [J]. Intermetallics, 2020, 120: 106746
doi: 10.1016/j.intermet.2020.106746
93 Zhang M N, Zhou X L, Wang D F, et al. AlCoCuFeNi high-entropy alloy with tailored microstructure and outstanding compressive properties fabricated via selective laser melting with heat treatment [J]. Mater. Sci. Eng., 2019, A743: 773
94 Yao H L, Tan Z, He D Y, et al. High strength and ductility AlCrFeNiV high entropy alloy with hierarchically heterogeneous microstructure prepared by selective laser melting [J]. J. Alloys Compd., 2020, 813: 152196
doi: 10.1016/j.jallcom.2019.152196
95 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
96 Yang X G, Zhou Y, Xi S Q, et al. Grain-anisotropied high-strength Ni6Cr4WFe9Ti high entropy alloys withoutstanding tensile ductility [J]. Mater. Sci. Eng., 2019, A767: 138382
97 Yang X G, Zhou Y, Xi S Q, et al. Additively manufactured fine grained Ni6Cr4WFe9Ti high entropy alloys with high strength and ductility [J]. Mater. Sci. Eng., 2019, A767: 138394
98 Li B, Qian B, Xu Y, et al. Fine-structured CoCrFeNiMn high-entropy alloy matrix composite with 12wt% TiN particle reinforcements via selective laser melting assisted additive manufacturing [J]. Mater. Lett., 2019, 252: 88
doi: 10.1016/j.matlet.2019.05.108
99 Li B, Zhang L, Xu Y, et al. Selective laser melting of CoCrFeNiMn high entropy alloy powder modified with nano-TiN particles for additive manufacturing and strength enhancement: Process, particle behavior and effects [J]. Powd. Technol., 2020, 360: 509
doi: 10.1016/j.powtec.2019.10.068
100 Kim Y K, Kim M C, Lee K A. 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 97: 10
doi: 10.1016/j.jmst.2021.04.030
101 Pauly S, Löber L, Petters R, et al. Processing metallic glasses by selective laser melting [J]. Mater. Today, 2013, 16: 37
doi: 10.1016/j.mattod.2013.01.018
102 Li N, Zhang J J, Xing W, et al. 3D printing of Fe-based bulk metallic glass composites with combined high strength and fracture toughness [J]. Mater. Des., 2018, 143: 285
doi: 10.1016/j.matdes.2018.01.061
103 Gao X H, Lin X, Yu J, et al. Selective laser melting (SLM) of in-situ beta phase reinforced Ti/Zr-based bulk metallic glass matrix composite [J]. Scr. Mater., 2019, 171: 21
doi: 10.1016/j.scriptamat.2019.06.007
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[3] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[4] 曹姝婷, 张少华, 张健. GH4061合金在高压富氧环境下的燃烧行为[J]. 金属学报, 2023, 59(4): 547-555.
[5] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[6] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[7] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[8] 段慧超, 王春阳, 叶恒强, 杜奎. 纳米多孔金属表面结构与成分的三维电子层析表征[J]. 金属学报, 2023, 59(10): 1291-1298.
[9] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[10] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[11] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[12] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[13] 杭弢, 薛琦, 李明. 无模板电沉积金属微纳米阵列材料研究进展[J]. 金属学报, 2022, 58(4): 486-502.
[14] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[15] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.