|
|
金属激光增材制造材料设计研究进展 |
宋波, 张金良, 章媛洁, 胡凯, 方儒轩, 姜鑫, 张莘茹, 吴祖胜, 史玉升( ) |
华中科技大学 材料成形与模具技术国家重点实验室 武汉 430074 |
|
Research Progress of Materials Design for Metal Laser Additive Manufacturing |
SONG Bo, ZHANG Jinliang, ZHANG Yuanjie, HU Kai, FANG Ruxuan, JIANG Xin, ZHANG Xinru, WU Zusheng, SHI Yusheng( ) |
State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China |
引用本文:
宋波, 张金良, 章媛洁, 胡凯, 方儒轩, 姜鑫, 张莘茹, 吴祖胜, 史玉升. 金属激光增材制造材料设计研究进展[J]. 金属学报, 2023, 59(1): 1-15.
Bo SONG,
Jinliang ZHANG,
Yuanjie ZHANG,
Kai HU,
Ruxuan FANG,
Xin JIANG,
Xinru ZHANG,
Zusheng WU,
Yusheng SHI.
Research Progress of Materials Design for Metal Laser Additive Manufacturing[J]. Acta Metall Sin, 2023, 59(1): 1-15.
1 |
Shi Y S. The industrial application and industrialization development of 3D printing technology [J]. Mach. Des. Manuf. Eng., 2016, 45(2): 11
|
1 |
史玉升. 3D打印技术的工业应用及产业化发展 [J]. 机械设计与制造工程, 2016, 45(2): 11
|
2 |
Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2690
|
2 |
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690
doi: 10.7527/S1000-6893.2014.0174
|
3 |
Yap C Y, Chua C K, Dong Z L, et al. Review of selective laser melting: Materials and applications [J]. Appl. Phys. Rev., 2015, 2: 041101
|
4 |
Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: Materials, processes and mechanisms [J]. Int. Mater. Rev., 2012, 57: 133
doi: 10.1179/1743280411Y.0000000014
|
5 |
Han J. Research on anisotropy of Ti6Al4V alloy fabricated by selective laser melting [D]. Wuhan: Huazhong University of Science and Technology, 2016
|
5 |
韩 婕. 激光选区熔化成形Ti6Al4V合金的各向异性研究 [D]. 武汉: 华中科技大学, 2016
|
6 |
Zhang J L, Song B, Wei Q S, et al. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends [J]. J. Mater. Sci. Technol., 2019, 35: 270
doi: 10.1016/j.jmst.2018.09.004
|
7 |
Li W, Liu J, Zhou Y, et al. Effect of substrate preheating on the texture, phase and nanohardness of a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting [J]. Scr. Mater., 2016, 118: 13
doi: 10.1016/j.scriptamat.2016.02.022
|
8 |
Jia Q B, Du D D. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties [J]. J. Alloys Compd., 2014, 585: 713-721
doi: 10.1016/j.jallcom.2013.09.171
|
9 |
Yang Q, Lu Z L, Huang F X, et al. Research on status and development trend of laser additive manufacturing [J]. Aeronaut. Manuf. Technol., 2016, (12): 26
|
9 |
杨 强, 鲁中良, 黄福享 等. 激光增材制造技术的研究现状及发展趋势 [J]. 航空制造技术, 2016, (12): 26
|
10 |
Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
|
11 |
Zhang J L, Yuan W H, Song B, et al. Towards understanding metallurgical defect formation of selective laser melted wrought aluminum alloys [J]. Adv. Powder Mater., 2022, 1: 100035
|
12 |
Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
doi: 10.1038/nature23894
|
13 |
Zhang H, Zhu H H, Nie X J, et al. Effect of Zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy [J]. Scr. Mater., 2017, 134: 6
doi: 10.1016/j.scriptamat.2017.02.036
|
14 |
Nie X J, Zhang H, Zhu H H, et al. Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted Zr modified Al-4.24Cu-1.97Mg-0.56Mn alloys [J]. J. Alloys Compd., 2018, 764: 977
doi: 10.1016/j.jallcom.2018.06.032
|
15 |
Li R D, Wang M B, Li Z M, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms [J]. Acta Mater., 2020, 193: 83
doi: 10.1016/j.actamat.2020.03.060
|
16 |
Jia Q B, Rometsch P, Kürnsteiner P, et al. Selective laser melting of a high strength Al-Mn-Sc alloy: Alloy design and strengthening mechanisms [J]. Acta Mater., 2019, 171: 108
doi: 10.1016/j.actamat.2019.04.014
|
17 |
Zhang J L, Gao J B, Song B, et al. A novel crack-free Ti-modified Al-Cu-Mg alloy designed for selective laser melting [J]. Addit. Manuf., 2021, 38: 101829
|
18 |
Gu D D, Wang H Q, Dai D H, et al. Rapid fabrication of Al-based bulk-form nanocomposites with novel reinforcement and enhanced performance by selective laser melting [J]. Scr. Mater., 2015, 96: 25
doi: 10.1016/j.scriptamat.2014.10.011
|
19 |
Gu D D, Rao X W, Dai D H, et al. Laser additive manufacturing of carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites: Processing optimization, microstructure evolution and mechanical properties [J]. Addit. Manuf., 2019, 29: 100801
|
20 |
Wang M, Song B, Wei Q S, et al. Improved mechanical properties of AlSi7Mg/nano-SiCp composites fabricated by selective laser melting [J]. J. Alloys Compd., 2019, 810: 151926
doi: 10.1016/j.jallcom.2019.151926
|
21 |
Tan H, Hao D P, Al-Hamdani K, et al. Direct metal deposition of TiB2/AlSi10Mg composites using satellited powders [J]. Mater. Lett., 2018, 214: 123
doi: 10.1016/j.matlet.2017.11.121
|
22 |
Li X P, Ji G, Chen Z, et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility [J]. Acta Mater., 2017, 129: 183
doi: 10.1016/j.actamat.2017.02.062
|
23 |
Gao C F, Xiao Z Y, Liu Z Q, et al. Selective laser melting of nano-TiN modified AlSi10Mg composite powder with low laser reflectivity [J]. Mater. Lett., 2019, 236: 362
doi: 10.1016/j.matlet.2018.10.126
|
24 |
Gao C, Wang Z, Xiao Z, et al. Selective laser melting of TiN nanoparticle-reinforced AlSi10Mg composite: Microstructural, interfacial, and mechanical properties [J]. J. Mater. Process. Technol., 2020, 281: 116618
doi: 10.1016/j.jmatprotec.2020.116618
|
25 |
Liu S Y, Shin Y C. Additive manufacturing of Ti6Al4V alloy: A review [J]. Mater. Des., 2019, 164: 107552
doi: 10.1016/j.matdes.2018.107552
|
26 |
Kruth J P, Mercelis P, Van Vaerenbergh J, et al. Binding mechanisms in selective laser sintering and selective laser melting [J]. Rapid Prototyp. J., 2005, 11: 26
doi: 10.1108/13552540510573365
|
27 |
Shipley H, McDonnell D, Culleton M, et al. Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review [J]. Int. J. Mach. Tools Manuf., 2018, 128: 1
doi: 10.1016/j.ijmachtools.2018.01.003
|
28 |
Zhang D Y, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys [J]. Nature, 2019, 576: 91
doi: 10.1038/s41586-019-1783-1
|
29 |
Zhang J L, Song B, Cai C, et al. Tailorable microstructure and mechanical properties of selective laser melted TiB/Ti-6Al-4V composite by heat treatment [J]. Adv. Powder Mater., 2022, 1: 100010
|
30 |
Attar H, Bönisch M, Calin M, et al. Selective laser melting of in situ titanium-titanium boride composites: Processing, microstructure and mechanical properties [J]. Acta Mater., 2014, 76: 13
doi: 10.1016/j.actamat.2014.05.022
|
31 |
Zhang J L, Song B, Yang L, et al. Microstructure evolution and mechanical properties of TiB/Ti6Al4V gradient-material lattice structure fabricated by laser powder bed fusion [J]. Composites, 2020, 202B: 108417
|
32 |
Gu D D, Meng G B, Li C, et al. Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement [J]. Scr. Mater., 2012, 67: 185
doi: 10.1016/j.scriptamat.2012.04.013
|
33 |
Han C J, Babicheva R, Chua J D Q, et al. Microstructure and mechanical properties of (TiB + TiC)/Ti composites fabricated in situ via selective laser melting of Ti and B4C powders [J]. Addit. Manuf., 2020, 36: 101466
|
34 |
Zhang W X. Research on the key technologies for selective laser melting process [D]. Wuhan: Huazhong University of Science and Technology, 2008
|
34 |
章文献. 选择性激光熔化快速成形关键技术研究 [D]. 武汉: 华中科技大学, 2008
|
35 |
Zhang S. Research on the forming processes and properties in selective laser melting of medical alloy powders [D]. Wuhan: Huazhong University of Science and Technology, 2014
|
35 |
张 升. 医用合金粉末激光选区熔化成形工艺与性能研究 [D]. 武汉: 华中科技大学, 2014
|
36 |
Zhao X. Fundamental research on the microstructure and properties evolution of tool steels fabricated by seletive laser melting [D]. Wuhan: Huazhong University of Science and Technology, 2016
|
36 |
赵 晓. 激光选区熔化成形模具钢材料的组织与性能演变基础研究 [D]. 武汉: 华中科技大学, 2016
|
37 |
Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021
pmid: 29115290
|
38 |
Kürnsteiner P, Wilms M B, Weisheit A, et al. High-strength Damascus steel by additive manufacturing [J]. Nature, 2020, 582: 515
doi: 10.1038/s41586-020-2409-3
|
39 |
Zhang Y J, Zhang J L, Yan Q, et al. Amorphous alloy strengthened stainless steel manufactured by selective laser melting: Enhanced strength and improved corrosion resistance [J]. Scr. Mater., 2018, 148: 20
doi: 10.1016/j.scriptamat.2018.01.016
|
40 |
Zhang Y J, Song B, Ming J, et al. Corrosion mechanism of amorphous alloy strengthened stainless steel composite fabricated by selective laser melting [J]. Corros. Sci., 2020, 163: 108241
doi: 10.1016/j.corsci.2019.108241
|
41 |
Grzesiak D, AlMangour B, Krawczyk M, et al. Selective laser melting of TiC reinforced stainless steel nanocomposites: Mechanical behaviour at elevated temperatures [J]. Mater. Lett., 2019, 256: 126633
doi: 10.1016/j.matlet.2019.126633
|
42 |
Liu Y F, Tang M K, Hu Q, et al. Densification behavior, microstructural evolution, and mechanical properties of TiC/AISI420 stainless steel composites fabricated by selective laser melting [J]. Mater. Des., 2019, 187: 108381
doi: 10.1016/j.matdes.2019.108381
|
43 |
Zhao S M, Shen X F, Yang J L, et al. Densification behavior and mechanical properties of nanocrystalline TiC reinforced 316L stainless steel composite parts fabricated by selective laser melting [J]. Opt. Laser Technol., 2018, 103: 239
doi: 10.1016/j.optlastec.2018.01.005
|
44 |
Zhao X, Wei Q S, Gao N, et al. Rapid fabrication of TiN/AISI 420 stainless steel composite by selective laser melting additive manufacturing [J]. J. Mater. Process. Technol., 2019, 270: 8
doi: 10.1016/j.jmatprotec.2019.01.028
|
45 |
Salman O O, Gammer C, Eckert J, et al. Selective laser melting of 316L stainless steel: Influence of TiB2 addition on microstructure and mechanical properties [J]. Mater. Today Commun., 2019, 21: 100615
|
46 |
Hu H, Wen S F, Duan L C, et al. Enhanced corrosion behavior of selective laser melting S136 mould steel reinforced with nano-TiB2 [J]. Opt. Laser Technol., 2019, 119: 105588
doi: 10.1016/j.optlastec.2019.105588
|
47 |
Wen S F, Hu H, Zhou Y, et al. Enhanced hardness and wear property of S136 mould steel with nano-TiB2 composites fabricated by selective laser melting method [J]. Appl. Surf. Sci., 2018, 457: 11
doi: 10.1016/j.apsusc.2018.06.220
|
48 |
Song B, Dong S J, Coddet C. Rapid in situ fabrication of Fe/SiC bulk nanocomposites by selective laser melting directly from a mixed powder of microsized Fe and SiC [J]. Scr. Mater., 2014, 75: 90
doi: 10.1016/j.scriptamat.2013.11.031
|
49 |
Wu C L, Zhang S, Zhang C H, et al. Effects of SiC content on phase evolution and corrosion behavior of SiC-reinforced 316L stainless steel matrix composites by laser melting deposition [J]. Opt. Laser Technol., 2019, 115: 134
doi: 10.1016/j.optlastec.2019.02.029
|
50 |
Song B, Wang Z W, Yan Q, et al. Integral method of preparation and fabrication of metal matrix composite: Selective laser melting of in-situ nano/submicro-sized carbides reinforced iron matrix composites [J]. Mater. Sci. Eng., 2017, A707: 478
|
51 |
Wen S F, Chen K Y, Li W, et al. Selective laser melting of reduced graphene oxide/S136 metal matrix composites with tailored microstructures and mechanical properties [J]. Mater. Des., 2019, 175: 107811
doi: 10.1016/j.matdes.2019.107811
|
52 |
Zhou Y, Gui Q Y, Yu W Y, et al. Interfacial diffusion printing: An efficient manufacturing technique for artificial tubular grafts [J]. ACS Biomater. Sci. Eng., 2019, 5: 6311
doi: 10.1021/acsbiomaterials.9b01293
|
53 |
Taltavull C, Shi Z, Torres B, et al. Influence of the chloride ion concentration on the corrosion of high-purity Mg, ZE41 and AZ91 in buffered Hank's solution [J]. J. Mater. Sci. Mater. Med., 2014, 25: 329
doi: 10.1007/s10856-013-5087-y
|
54 |
Zhang W N, Wang L Z, Feng Z X, et al. Research progress on selective laser melting (SLM) of magnesium alloys: A review [J]. Optik, 2020, 207: 163842
doi: 10.1016/j.ijleo.2019.163842
|
55 |
Gunduz K O, Oter Z C, Tarakci M, et al. Plasma electrolytic oxidation of binary Mg-Al and Mg-Zn alloys [J]. Surf. Coat. Technol., 2017, 323: 72
doi: 10.1016/j.surfcoat.2016.08.040
|
56 |
Tan Q Y, Mo N, Lin C L, et al. Generalisation of the oxide reinforcement model for the high oxidation resistance of some Mg alloys micro-alloyed with Be [J]. Corros. Sci., 2019, 147: 357
doi: 10.1016/j.corsci.2018.12.001
|
57 |
Lee S J, Do L H T. Effects of copper additive on micro-arc oxidation coating of LZ91 magnesium-lithium alloy [J]. Surf. Coat. Technol., 2016, 307: 781
doi: 10.1016/j.surfcoat.2016.10.008
|
58 |
Shuai C J, He C X, Feng P, et al. Biodegradation mechanisms of selective laser-melted Mg-xAl-Zn alloy: Grain size and intermetallic phase [J]. Virtual Phys. Prototy., 2018, 13: 59
doi: 10.1080/17452759.2017.1408918
|
59 |
Zhou M R, Morisada Y, Fujii H. Effect of Ca addition on the microstructure and the mechanical properties of asymmetric double-sided friction stir welded AZ61 magnesium alloy [J]. J. Magnes. Alloy., 2020, 8: 91
doi: 10.1016/j.jma.2020.02.001
|
60 |
Yang J, Peng J, Nyberg E A, et al. Effect of Ca addition on the corrosion behavior of Mg-Al-Mn alloy [J]. Appl. Surf. Sci., 2016, 369: 92
doi: 10.1016/j.apsusc.2016.01.283
|
61 |
Baek S M, Kang J S, Shin H J, et al. Role of alloyed Y in improving the corrosion resistance of extruded Mg-Al-Ca-based alloy [J]. Corros. Sci., 2017, 118: 227
doi: 10.1016/j.corsci.2017.01.022
|
62 |
Shuai C J, He C X, Xu L, et al. Wrapping effect of secondary phases on the grains: Increased corrosion resistance of Mg-Al alloys [J]. Virtual Phys. Prototy., 2018, 13: 292
doi: 10.1080/17452759.2018.1479969
|
63 |
Zhang M, Chen C J, Liu C, et al. Study on porous Mg-Zn-Zr ZK61 alloys produced by laser additive manufacturing [J]. Metals, 2018, 8: 635
doi: 10.3390/met8080635
|
64 |
Long T, Zhang X H, Huang Q L, et al. Novel Mg-based alloys by selective laser melting for biomedical applications: Microstructure evolution, microhardness and in vitro degradation behaviour [J]. Virtual Phys. Prototy., 2018, 13: 71
doi: 10.1080/17452759.2017.1411662
|
65 |
Haberland C, Elahinia M, Walker J M, et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing [J]. Smart Mater. Struct., 2014, 23: 104002
doi: 10.1088/0964-1726/23/10/104002
|
66 |
Haberland C, Meier H, Frenzel J. On the properties of Ni-rich NiTi shape memory parts produced by selective laser melting [A]. ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems [C]. Stone Mountain, GA, USA: American Society of Mechanical Engineers, 2012: 97
|
67 |
Hamilton R F, Palmer T A, Bimber B A. Spatial characterization of the thermal-induced phase transformation throughout as-deposited additive manufactured NiTi bulk builds [J]. Scr. Mater., 2015, 101: 56
doi: 10.1016/j.scriptamat.2015.01.018
|
68 |
Habijan T, Haberland C, Meier H, et al. The biocompatibility of dense and porous nickel-titanium produced by selective laser melting [J]. Mater. Sci. Eng., 2013, C33: 419
|
69 |
Tan C L, Li S, Essa K, et al. Laser powder bed fusion of Ti-rich TiNi lattice structures: Process optimisation, geometrical integrity, and phase transformations [J]. Int. J. Mach. Tools Manuf., 2019, 141: 19
doi: 10.1016/j.ijmachtools.2019.04.002
|
70 |
Xue L, Atli K C, Picak S, et al. Controlling martensitic transformation characteristics in defect-free NiTi shape memory alloys fabricated using laser powder bed fusion and a process optimization framework [J]. Acta Mater., 2021, 215: 117017
doi: 10.1016/j.actamat.2021.117017
|
71 |
Zhang Q Q, Hao S J, Liu Y T, et al. The microstructure of a selective laser melting (SLM)-fabricated NiTi shape memory alloy with superior tensile property and shape memory recoverability [J]. Appl. Mater. Today, 2020, 19: 100547
|
72 |
Lu B W, Cui X F, Ma W Y, et al. Promoting the heterogeneous nucleation and the functional properties of directed energy deposited NiTi alloy by addition of La2O3 [J]. Addit. Manuf., 2020, 33: 101150
|
73 |
Li S. Fundamental research on the microstructure and properties evolution of nickel-based superalloy fabricated by selective laser melting [D]. Wuhan: Huazhong University of Science and Technology, 2017
|
73 |
李 帅. 激光选区熔化成形镍基高温合金的组织与性能演变基础研究 [D]. 武汉: 华中科技大学, 2017
|
74 |
Kakehi K, Banoth S, Kuo Y L, et al. Effect of yttrium addition on creep properties of a Ni-base superalloy built up by selective laser melting [J]. Scr. Mater., 2020, 183: 71
doi: 10.1016/j.scriptamat.2020.03.014
|
75 |
Wang H L. Effect of element Re and W on microstructure and properties of selective laser melting GH4169 nickel-based alloy powder [D]. Taiyuan: North University of China, 2015
|
75 |
王海丽. 元素Re和W对选区激光熔化GH4169镍基合金组织及性能的影响 [D]. 太原: 中北大学, 2015
|
76 |
Chen L, Sun Y Z, Li L, et al. Effect of heat treatment on the microstructure and high temperature oxidation behavior of TiC/Inconel 625 nanocomposites fabricated by selective laser melting [J]. Corros. Sci., 2020, 169: 108606
doi: 10.1016/j.corsci.2020.108606
|
77 |
Li X F, Yi D H, Liu B, et al. Graphene-strengthened Inconel 625 alloy fabricated by selective laser melting [J]. Mater. Sci. Eng., 2020, A798: 140099
|
78 |
Zhang B C, Bi G J, Nai S, et al. Microhardness and microstructure evolution of TiB2 reinforced Inconel 625/TiB2 composite produced by selective laser melting [J]. Opt. Laser Technol., 2016, 80: 186
doi: 10.1016/j.optlastec.2016.01.010
|
79 |
Wang W Q, Wang S Y, Chen F, et al. Microstructure and mechanical properties of TiN/Inconel 718 composites fabricated by selective laser melting [J]. Acta. Metall. Sin., 2021, 57: 1017
doi: 10.11900/0412.1961.2020.00485
|
79 |
王文权, 王苏煜, 陈飞 等. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能 [J]. 金属学报, 2021, 57: 1017
doi: 10.11900/0412.1961.2020.00485
|
80 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.200300567
|
81 |
Cantor B., Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
|
82 |
Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
doi: 10.1016/j.actamat.2013.04.058
|
83 |
Huo W Y, Liu X D, Tan S Y, et al. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films [J]. Appl. Surf. Sci., 2018, 439: 222
doi: 10.1016/j.apsusc.2018.01.050
|
84 |
Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of Al x Co1.5CrFeNi1.5Ti y high-entropy alloys [J]. Acta Mater., 2011, 59: 6308
doi: 10.1016/j.actamat.2011.06.041
|
85 |
Li R D, Niu P D, Yuan T C, et al. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property [J]. J. Alloys Compd., 2018, 746: 125
doi: 10.1016/j.jallcom.2018.02.298
|
86 |
Fujieda T, Chen M C, Shiratori H, et al. Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive manufactured using selective laser melting [J]. Addit. Manuf., 2019, 25: 412
|
87 |
Karlsson D, Marshal A, Johansson F, et al. Elemental segregation in an AlCoCrFeNi high-entropy alloy—A comparison between selective laser melting and induction melting [J]. J. Alloys Compd., 2019, 784: 195
doi: 10.1016/j.jallcom.2018.12.267
|
88 |
Zhang H, Zhao Y Z, Cai J L, et al. High-strength NbMoTaX refractory high-entropy alloy with low stacking fault energy eutectic phase via laser additive manufacturing [J]. Mater. Des., 2021, 201: 109462
doi: 10.1016/j.matdes.2021.109462
|
89 |
Sun Z J, Tan X P, Wang C C, et al. Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: Example of an Al x CoCrFeNi high-entropy alloy [J]. Acta Mater., 2021, 204: 116505
doi: 10.1016/j.actamat.2020.116505
|
90 |
Luo S C, Gao P, Yu H C, et al. Selective laser melting of an equiatomic AlCrCuFeNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical behavior [J]. J. Alloys Compd., 2019, 771: 387
doi: 10.1016/j.jallcom.2018.08.290
|
91 |
Luo S C, Zhao C Y, Su Y, et al. Selective laser melting of dual phase AlCrCuFeNi x high entropy alloys: Formability, heterogeneous microstructures and deformation mechanisms [J]. Addit. Manuf., 2020, 31: 100925
|
92 |
Wang Y, Li R D, Niu P D, et al. Microstructures and properties of equimolar AlCoCrCuFeNi high-entropy alloy additively manufactured by selective laser melting [J]. Intermetallics, 2020, 120: 106746
doi: 10.1016/j.intermet.2020.106746
|
93 |
Zhang M N, Zhou X L, Wang D F, et al. AlCoCuFeNi high-entropy alloy with tailored microstructure and outstanding compressive properties fabricated via selective laser melting with heat treatment [J]. Mater. Sci. Eng., 2019, A743: 773
|
94 |
Yao H L, Tan Z, He D Y, et al. High strength and ductility AlCrFeNiV high entropy alloy with hierarchically heterogeneous microstructure prepared by selective laser melting [J]. J. Alloys Compd., 2020, 813: 152196
doi: 10.1016/j.jallcom.2019.152196
|
95 |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
|
96 |
Yang X G, Zhou Y, Xi S Q, et al. Grain-anisotropied high-strength Ni6Cr4WFe9Ti high entropy alloys withoutstanding tensile ductility [J]. Mater. Sci. Eng., 2019, A767: 138382
|
97 |
Yang X G, Zhou Y, Xi S Q, et al. Additively manufactured fine grained Ni6Cr4WFe9Ti high entropy alloys with high strength and ductility [J]. Mater. Sci. Eng., 2019, A767: 138394
|
98 |
Li B, Qian B, Xu Y, et al. Fine-structured CoCrFeNiMn high-entropy alloy matrix composite with 12wt% TiN particle reinforcements via selective laser melting assisted additive manufacturing [J]. Mater. Lett., 2019, 252: 88
doi: 10.1016/j.matlet.2019.05.108
|
99 |
Li B, Zhang L, Xu Y, et al. Selective laser melting of CoCrFeNiMn high entropy alloy powder modified with nano-TiN particles for additive manufacturing and strength enhancement: Process, particle behavior and effects [J]. Powd. Technol., 2020, 360: 509
doi: 10.1016/j.powtec.2019.10.068
|
100 |
Kim Y K, Kim M C, Lee K A. 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 97: 10
doi: 10.1016/j.jmst.2021.04.030
|
101 |
Pauly S, Löber L, Petters R, et al. Processing metallic glasses by selective laser melting [J]. Mater. Today, 2013, 16: 37
doi: 10.1016/j.mattod.2013.01.018
|
102 |
Li N, Zhang J J, Xing W, et al. 3D printing of Fe-based bulk metallic glass composites with combined high strength and fracture toughness [J]. Mater. Des., 2018, 143: 285
doi: 10.1016/j.matdes.2018.01.061
|
103 |
Gao X H, Lin X, Yu J, et al. Selective laser melting (SLM) of in-situ beta phase reinforced Ti/Zr-based bulk metallic glass matrix composite [J]. Scr. Mater., 2019, 171: 21
doi: 10.1016/j.scriptamat.2019.06.007
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|