Please wait a minute...
金属学报  2018, Vol. 54 Issue (12): 1725-1734    DOI: 10.11900/0412.1961.2018.00052
  本期目录 | 过刊浏览 |
电子束熔丝沉积快速成形2319铝合金的微观组织与力学性能
于菁1,2, 王继杰2, 倪丁瑞1(), 肖伯律1, 马宗义1, 潘兴龙3
1 中国科学院金属研究所 沈阳 110016
2 沈阳航空航天大学材料科学与工程学院 沈阳 110036
3 桂林狮达机电技术工程有限公司 桂林 541004
Microstructure and Mechanical Properties of Additive Manufactured 2319 Alloy by Electron BeamFreeform Fabrication
Jing YU1,2, Jijie WANG2, Dingrui NI1(), Bolv XIAO1, Zongyi MA1, Xinglong PAN3
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 College of Material Science and Engineering, Shenyang Aerospace University, Shenyang 110036, China
3 Guilin THD Mech. & Elec. Engineering Co. Ltd., Guilin 541004, China;
全文: PDF(10373 KB)   HTML
摘要: 

选用直径2 mm的2319铝合金丝材进行电子束熔丝沉积快速成形,制备出尺寸为150 mm×35 mm×52 mm的打印样品。研究了样品在不同方向上的微观组织与力学性能。结果表明,通过控制电子束增材制造的参数,可获得致密无宏观缺陷的块体材料,其致密度可达到99.3%。打印态2319铝合金的平均晶粒尺寸小于10 μm,并含有初晶Al2Cu相、细小析出相和粗大杂质相。样品中存在少量的微小孔洞,其尺寸为5~15 μm。样品在长、宽、高3个方向的拉伸强度分别约为161、174和167 MPa。经T6处理后,粗大相基本熔解,析出尺寸更细小、分布更均匀的沉淀强化相,孔洞尺寸有所增大。由于沉淀强化起了主导作用,T6处理后样品力学性能显著提高,3个方向的拉伸强度分别提高到约423、495和421 MPa。

关键词 铝合金增材制造电子束熔丝沉积快速成形微观组织力学性能    
Abstract

Aluminum alloys have the advantages of light weight and high strength, and they are important structural materials in aerospace field. The additive manufacturing technology of aluminum alloys has a potential application prospect in the field of on-orbit manufacturing in the future, and the technology of electron beam fuse deposition is the best process selection due to its unique technical advantages. In the present study, 2319 aluminum alloy wires with diameter of 2 mm were used for additive manufacturing (AM) by electron beam freeform fabrication (EBF3), with a sample of 150 mm×35 mm×52 mm being printed. The microstructure and mechanical properties of the printed sample in three directions were investigated. The results showed that bulk materials of the 2319 alloy can be printed without macroscopic defects under selective EBF3 parameters, with a relative density of 99.3% compared to the initial wires. The average grain size of the printed sample was less than 10 μm, containing primary Al2Cu phases, fine particles, and coarse impurity phases. There are some tiny voids in the printed sample, and the sizes of the voids are 5~15 μm. The ultimate tensile strengths of the printed sample were 161, 174 and 167 MPa in the length, width and height directions. After a T6 treatment, the coarse phase were basically dissolved and some finer phases were re-precipitated. Due to the dominant effect of dispersion strengthening, the mechanical properties of the sample were significantly improved, and the ultimate tensile strengths of the sample in three directions were increased to 423, 495, and 421 MPa, respectively.

Key wordsAl alloy    additive manufacturing (AM)    electron beam freeform fabrication (EBF3)    microstructure    mechanical property
收稿日期: 2018-02-05     
ZTFLH:  TG146.2  
基金资助:载人航天预先研究项目No.030302
作者简介:

作者简介 于 菁,男,1993年生,硕士生

引用本文:

于菁, 王继杰, 倪丁瑞, 肖伯律, 马宗义, 潘兴龙. 电子束熔丝沉积快速成形2319铝合金的微观组织与力学性能[J]. 金属学报, 2018, 54(12): 1725-1734.
Jing YU, Jijie WANG, Dingrui NI, Bolv XIAO, Zongyi MA, Xinglong PAN. Microstructure and Mechanical Properties of Additive Manufactured 2319 Alloy by Electron BeamFreeform Fabrication. Acta Metall Sin, 2018, 54(12): 1725-1734.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00052      或      https://www.ams.org.cn/CN/Y2018/V54/I12/1725

图1  电子束熔丝沉积快速成形2319铝合金样品宏观形貌
图2  打印态与T6态2319铝合金在长度和高度方向的OM像
图3  打印态与T6态2319铝合金的XRD谱
图4  打印态2319铝合金的TEM像
图5  T6态2319铝合金的TEM像
图6  打印态与T6态2319铝合金在长度和高度上的孔洞分布
Sample Density / (gcm-3) Relative density / %
Wire 2.814 100.0
As-printed 2.794 99.3
T6 treated 2.776 98.6
表1  原始2319丝材与打印态、T6态块体样品的密度与致密度
Sample Direction Ultimate tensile strength / MPa Elongation / %
As-printed X 161±7 1.0±0.17
Y 174±8 2.5±0.26
Z 167±8 1.0±0.09
T6 heat-treated X 423±21 2.7±0.55
Y 495±10 4.9±0.11
Z 421±20 2.7±0.18
表2  打印态与T6态2319铝合金在不同方向的拉伸性能
图7  打印态与T6态2319铝合金在宽度和高度方向的拉伸断口形貌
[1] Gao W, Zhang Y B, Ramanujan D, et al.The status, challenges, and future of additive manufacturing in engineering[J]. Comput.-Aided Des., 2015, 69: 65
[2] Zeltmann S E, Gupta N, Tsoutsos N G, et al.Manufacturing and security challenges in 3D printing[J]. JOM, 2016, 68: 1872
[3] Bourell D, Kruth J P, Leu M, et al.Materials for additive manufacturing[J]. CIRP Ann., 2017, 66: 659
[4] Herzog D, Seyda V, Wycisk E, et al.Additive manufacturing of metals[J]. Acta Mater., 2016, 117: 371
[5] Zhang X J, Tang S Y, Zhao H Y, et al.Research status and key technologies of 3D printing[J]. J. Mater. Eng., 2016, 44(2): 122(张学军, 唐思熠, 肇恒跃等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44(2): 122)
[6] Yang P H, Gao X X, Liang J, et al.Development tread and NDT progress of metal additive manufacture technique[J]. J. Mater. Eng., 2017, 45(9): 13(杨平华, 高祥熙, 梁菁等. 金属增材制造技术发展动向及无损检测研究进展[J]. 材料工程, 2017, 45(9): 13)
[7] Liang J J, Yang Y H, Jin T, et al.Research status of 3D printing technology for metals in space[J]. Manned Spaceflight, 2017, 23: 663(梁静静, 杨彦红, 金涛等. 金属材料空间3D打印技术研究现状[J]. 载人航天, 2017, 23: 663)
[8] Huang D, Zhu Z H, Geng H B, et al.TIG wire and arc additive manufacturing of 5A06 aluminum alloy[J]. J. Mater. Eng., 2017, 45(3): 66(黄丹, 朱志华, 耿海滨等. 5A06铝合金TIG丝材-电弧增材制造工艺[J]. 材料工程, 2017, 45(3): 66)
[9] Basak A, Das S.Epitaxy and microstructure evolution in metal additive manufacturing[J]. Annu. Rev. Mater. Res., 2016, 46: 125
[10] Zhai Y W, Galarraga H, Lados D A.Microstructure evolution, tensile properties, and fatigue damage mechanisms in Ti-6Al-4V alloys fabricated by two additive manufacturing techniques[J]. Procedia Eng., 2015, 114: 658
[11] Babu S S, Goodridge R.Additive manufacturing[J]. Mater. Sci. Technol., 2015, 31: 881
[12] Sames W J, List F A, Pannala S, et al.The metallurgy and processing science of metal additive manufacturing[J]. Int. Mater. Rev., 2016, 61: 315
[13] Chen Z Y, Suo H B, Li J W.The forming character of electron beam freeform fabrication[J]. Aerospace Manuf. Technol., 2010, (1): 36(陈哲源, 锁红波, 李晋炜. 电子束熔丝沉积快速制造成型技术与组织特征[J]. 航天制造技术, 2010, (1): 36)
[14] Brice C A, Henn D S.Rapid prototyping and freeform fabrication via electron beam welding deposition [A]. Proceedings of International Institute of Welding Conference[C]. Copenhagen, Denmark, 2002
[15] Huang Z T, Gong S L, Suo H B, et al.Microstructure and properties of TC4 titanium alloy manufactured by electron beam rapid manufacturing[J]. Titanium Ind. Prog., 2016, 33(5): 33(黄志涛, 巩水利, 锁红波等. 电子束熔丝成形的TC4钛合金的组织与性能研究[J]. 钛工业进展, 2016, 33(5): 33)
[16] Yang Y, Suo H B, Chen Z Y, et al.Effect of solution temperature on microstructure and mechanical properties of TC17 alloy fabricated by electron beam wire deposition[J]. Heat Treat. Met., 2016, 41(9): 141(杨洋, 锁红波, 陈哲源等. 固溶温度对电子束熔丝成形TC17合金组织与性能的影响[J]. 金属热处理, 2016, 41(9): 141)
[17] Brandl E, Michailov V, Viehweger B, et al.Deposition of Ti-6Al-4V using laser and wire, part I: Microstructural properties of single beads[J]. Surf. Coat. Technol., 2011, 206: 1120
[18] Bush R W, Brice C A.Elevated temperature characterization of electron beam freeform fabricated Ti-6Al-4V and dispersion strengthened Ti-8Al-1Er[J]. Mater. Sci. Eng., 2012, A554: 12
[19] Read N, Wang W, Essa K, et al.Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development[J]. Mater. Des., 2015, 65: 417
[20] Brandl E, Heckenberger U, Holzinger V, et al.Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior[J]. Mater. Des., 2012, 34: 159
[21] Krishnan M, Atzeni E, Canali R, et al.On the effect of process parameters on properties of AlSi10Mg parts produced by DMLS[J]. Rapid Prototyping J., 2014, 20: 449.
[22] Yang Z Y, Zhao J Y.Additive Manufacturing and 3D Print Technology & Application [M]. Beijing: Tsinghua University Press, 2017: 1(杨占尧, 赵敬云. 增材制造与3D打印技术及应用 [M]. 北京: 清华大学出版社, 2017: 1)
[23] Taminger K M B, Hafley R A. Characterization of 2219 aluminum produced by electron beam freeform fabrication [A]. Proceedings of the 13th Solid Freeform Fabrication Symposium[C]. Austin, TX: NASA, 2002: 482
[24] Taminger K M B, Hafley R A. Electron beam freeform fabrication: A rapid metal deposition process [A]. Proceedings of the 3rd Annual Automotive Composites Conference[C]. Troy, Michigan: NASA, 2003: 1
[25] Domack M S, Taminger K M B, Begley M. Metallurgical mechanisms controlling mechanical properties of aluminium alloy 2219 produced by electron beam freeform fabrication[J]. Mater. Sci. Forum, 2006, 519-521: 1291
[26] Taminger K M, Hafley R A.Electron beam freeform fabrication for cost effective near-net shape manufacturing [A]. NATO/RTO AVT-139 Specialists' Meeting on Cost Effective Manufacture via Net Shape Processing[C]. Amsterdam: NASA, 2006: 1
[27] Taminger K M, Hafley R A, Domack M S. Evolution and control of2219 aluminium microstructural features through electron beam freeform fabrication[J]. Mater. Sci. Forum, 2006, 519-521: 1297
[28] Cai Y.Research on the microstructure and mechanical properties of 2219 aluminum alloy sheet during stretch forming [D]. Harbin: Harbin Institute of Technology, 2012(蔡洋. 2219铝合金板材拉形过程微观组织和力学性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012)
[29] Brice C, Shenoy R, Kral M, et al.Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing[J]. Mater. Sci. Eng., 2015, A648: 9
[30] Wan S X.The effects of hot extrusion and aging process on the microstructure and mechanical properties of 2219 aluminum alloy [D]. Harbin: Harbin University of Science and Technology, 2016(万升祥. 热挤压时效工艺对2219铝合金微观组织及力学性能的影响 [D]. 哈尔滨: 哈尔滨理工大学, 2016)
[31] Cui Z Q, Liu B X.Metallurgy and Heat Treatment Theory [M]. 3rd Ed., Harbin: Harbin Institute of Technology Press, 2007: 1(崔忠圻, 刘北兴. 金属学与热处理原理 [M]. 第3版, 哈尔滨: 哈尔滨工业大学出版社, 2007: 1)
[32] Sun R J, Zhu Y, Li L H, et al.Effect of laser shock peening on microstructure and residual stress of wire-arc additive manufactured 2319 aluminum alloy[J]. Laser Optoelectron. Prog., 2018, 55: 011412(孙汝剑, 朱颖, 李刘合等. 激光冲击强化对电弧增材2319铝合金微观组织及残余应力的影响[J]. 激光与光电子学进展, 2018, 55: 011412)
[33] Tomus D, Qian M, Brice C A, et al.Electron beam processing of Al-2Sc alloy for enhanced precipitation hardening[J]. Scr. Mater., 2010, 63: 151
[34] Brice C A, Dennis N.Cooling rate determination in additively manufactured aluminum alloy 2219[J]. Metall. Mater. Soc. Trans., 2015, 46A: 2304
[35] Cong B Q, Ding J L, Williams S.Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy[J]. Int. J. Adv. Manuf. Technol., 2015, 76: 1595
[36] Gu J L, Ding J L, Williams S W, et al.The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3Cu alloy[J]. Mater. Sci. Eng., 2016, A651: 18
[37] Gu J L, Ding J L, Williams S W, et al.The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys[J]. J. Mater. Process. Technol., 2016, 230: 26
[38] Sun J B, Wang S H, Sun G, et al.Microstructures and mechanical properties of 2219-T852 aluminum alloy forgings[J]. Heat Treat. Met., 2017, 42(2): 83(孙进宝, 王少华, 孙刚等. 2219-T852铝合金锻件的显微组织与力学性能[J]. 金属热处理, 2017, 42(2): 83)
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[4] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[5] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[6] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[7] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[8] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[9] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[10] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[11] 柯林达,殷杰,朱海红,彭刚勇,孙京丽,陈昌棚,王国庆,李中权,曾晓雁. 钛合金薄壁件选区激光熔化应力演变的数值模拟[J]. 金属学报, 2020, 56(3): 374-384.
[12] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[13] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[14] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[15] 卢振洋,田宏宇,陈树君,李方. 电弧增减材复合制造精度控制研究进展[J]. 金属学报, 2020, 56(1): 83-98.