Please wait a minute...
金属学报  2018, Vol. 54 Issue (12): 1715-1724    DOI: 10.11900/0412.1961.2018.00291
  本期目录 | 过刊浏览 |
Mg中双拉伸孪晶及其构成的复合孪晶结构
石章智1,2(), 刘雪峰1,2,3
1 北京科技大学材料科学与工程学院 北京 100083
2 北京科技大学现代交通金属材料与加工技术北京实验室 北京 100083
3 北京科技大学材料先进制备技术教育部重点实验室 北京 100083
Double Extension Twin and Its Related CompoundTwin Structures in Mg
Zhangzhi SHI1,2(), Xuefeng LIU1,2,3
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083, China
3 Key Laboratory for Advanced Materials Processing of Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

石章智, 刘雪峰. Mg中双拉伸孪晶及其构成的复合孪晶结构[J]. 金属学报, 2018, 54(12): 1715-1724.
Zhangzhi SHI, Xuefeng LIU. Double Extension Twin and Its Related CompoundTwin Structures in Mg[J]. Acta Metall Sin, 2018, 54(12): 1715-1724.

全文: PDF(3832 KB)   HTML
摘要: 

本文系统总结了Mg中{10$\bar{1}$2}-{10$\bar{1}$2}双拉伸孪晶及其构成的复合孪晶结构的研究进展。连续多向变形可以显著降低Mg的拉/压不对称性,其基本步骤是连续双向变形,该过程在Mg中激发大量双拉伸孪晶形成,它有36个变体,可分为4个取向差组,其中一组显著择优,无法用Schmid因子(SF)完全解释。一次和二次拉伸孪晶在晶界处或晶内孪晶界处交汇,形成晶间或晶内复合孪晶结构,它们的形成路径具有多样性。SF法则和衡量孪生切变穿越界面的m' 因子,对解释晶间或晶内复合孪晶结构的形成,部分或者完全失效,这对人们揭示较复杂条件下孪晶的形成机理提供了机遇和挑战。建议未来的工作重点围绕模拟晶内复合孪晶结构的形成以及实验观察一次拉伸孪晶间界面和二次拉伸孪晶界的界面结构展开。

关键词 Mg连续双向变形双拉伸孪晶复合孪晶结构    
Abstract

This paper summarizes recent research progresses on {10$\bar{1}$2}-{10$\bar{1}$2} double extension twin and its related compound twin structures in Mg. Tension-compression asymmetry of Mg with strong texture can be greatly alleviated through sequential multi-directional deformations, which consist of several sequential bi-axial deformations. There exist 36 possible double extension twin variants, which can be classified into four misorientation groups according to their misorientations with respect to the grain matrix. One of the groups appears with a much higher frequency than the others, which cannot be perfectly explained by Schmid factor (SF) rule. Primary and secondary extension twins form intergranular and intragranular compound twin structures without any one-for-all mechanism. SF rule and m' factor, which evaluates how much twinning shear can pass through an interface, partly or even totally fail to explain the formation of the compound twin structures, presenting challenge to make clear mechanism of twin formation under complex loading conditions. It is suggested that modelling on the formation of intragranular compound twin structure and experimental characterization of interfacial structures of primary twin-twin boundary and secondary twin boundary should be paid much attention in the future.

Key wordsMg    sequential bi-axial deformation    double extension twin    compound twin structure
收稿日期: 2018-06-29     
ZTFLH:  TG146.22  
基金资助:国家自然科学基金项目No.51601010
作者简介:

作者简介 石章智,1984年生,副教授,博士

Variant Twinning plane Twinning direction
PV1/SV1 (10$\bar{1}$2) [$\bar{1}$011]
PV2/SV2 (01$\bar{1}$2) [0$\bar{1}$11]
PV3/SV3 ($\bar{1}$102) [1$\bar{1}$01]
PV4/SV4 ($\bar{1}$012) [10$\bar{1}$1]
PV5/SV5 (0$\bar{1}$12) [01$\bar{1}$1]
PV6/SV6 (1$\bar{1}$02) [$\bar{1}$101]
表1  一次和二次拉伸孪晶的变体[13,26]
图1  含有多个孪晶的晶粒G1的EBSD像及其{0001}极图
Variant SV1 SV2 SV3 SV4 SV5 SV6
PV1 <0 14 $\bar{14}$ 1>60° <7$\bar{8}$10>60.4° <1$\bar{2}$10>7.4° <1$\bar{8}$70>60.4° <$\bar{14}$ 14 0 $\bar{1}$>60°
PV2 <$\bar{14}$ 0 14 $\bar{1}$>60° <$\bar{14}$ 14 0 1>60° <8$\bar{1}$ $\bar{7}$0>60.4° <2$\bar{1}$ $\bar{1}$0>7.4° <8$\bar{7}$ $\bar{1}$0>60.4°
PV3 <71$\bar{8}$0>60.4° <0 $\bar{14}$ 14 $\bar{1}$>60° <$\bar{14}$ 0 14 1>60° <17$\bar{8}$0>60.4° <11$\bar{2}$0>7.4°
PV4 <$\bar{1}$2$\bar{1}$0>7.4° <$\bar{1}$8$\bar{7}$0>60.4° <14 $\bar{14}$ 0 $\bar{1}$>60° <0 $\bar{14}$ 14 1>60° <$\bar{7}$8$\bar{1}$0>60.4°
PV5 <$\bar{8}$170>60.4° <$\bar{2}$110>7.4° <$\bar{8}$710>60.4° <14 0 $\bar{14}$ $\bar{1}$>60° <14 $\bar{14}$ 0 1>60°
PV6 <14 0 $\bar{14}$ 1>60° <$\bar{1}$ $\bar{7}$80>60.4° <$\bar{1}$ $\bar{1}$20>7.4° <$\bar{7}$ $\bar{1}$80>60.4° <0 14 $\bar{14}$ $\bar{1}$>60°
表2  双拉伸孪晶的36个孪晶变体PVj-SVk (j, k=1~6)[13]
Group Misorientation Variant
I 6
II <1$\bar{2}$10>7.4° 6
III <0 14 $\bar{14}$ 1>60° 12
IV <17$\bar{8}$0> 60.4° 12
表3  双拉伸孪晶的4个位向关系组[13]
图2  晶间和晶内复合孪晶结构[14,15]
图3  晶间和晶内复合孪晶结构的EBSD统计分析[14,15]
OR-(θ1, θ2, θ3) PVi & PVj-SVk PVi & PVj G & PVj-SVk m'
OR1-(44.0°, 60.0°, 60.0°) <0$\bar{3}$32>44.0° <0 14 $\bar{14}$ 1>60.0° <0 14 $\bar{14}$ 1>60.0° -0.07
OR2-(49.7°, 60.0°, 60.0°) <02$\bar{2}$1>49.7° <0 14 $\bar{14}$ 1>60.0° <0 14 $\bar{14}$ 1>60.0° -0.15
OR3-(49.7°, 60.0°, 60.4°) <7$\bar{6}$ $\bar{1}$ $\bar{4}$>49.7° <0 14 $\bar{14}$ 1>60.0° <17$\bar{8}$0>60.4° 0.11
OR4-(49.7°, 60.4°, 60.0°) <7$\bar{6}$ $\bar{1}$ $\bar{4}$>49.7° <17$\bar{8}$0>60.4° <0 14 $\bar{14}$ 1>60.0° 0.11
OR5-(37.9°, 60.4°, 60.4°) <02$\bar{2}$1>37.9° <17$\bar{8}$0>60.4° <17$\bar{8}$0>60.4° -0.10
OR6-(55.1°, 60.4°, 60.4°) <02$\bar{2}$1>55.1° <17$\bar{8}$0>60.4° <17$\bar{8}$0>60.4° -0.11
OR7-(44.0°, 60.4°, 60.0°) <02$\bar{2}$1>44.0° <17$\bar{8}$0>60.4° <0 14 $\bar{14}$ 1>60.0° 0.17
OR8-(44.0°, 60.0°, 60.4°) <02$\bar{2}$1>44.0° <0 14 $\bar{14}$ 1>60.0° <17$\bar{8}$0>60.4° 0.17
OR9-(78.9°, 7.4°, 7.4°) <1$\bar{2}$10>78.9° <1$\bar{2}$10>7.4° <1$\bar{2}$10>7.4° -0.98
OR10-(82.8°, 7.4°, 60.4°) <1$\bar{2}$10>82.8° <1$\bar{2}$10>7.4° <17$\bar{8}$0>60.4° -0.55
OR11-(82.8°, 60.4°, 7.4°) <1$\bar{2}$10>82.8° <17$\bar{8}$0>60.4° <1$\bar{2}$10>7.4° -0.55
OR12-(90.2°, 7.4°, 60.0°) <1$\bar{2}$10>90.2° <1$\bar{2}$10>7.4° <0 14 $\bar{14}$ 1>60.0° -0.06
OR13-(90.2°, 60.0°, 7.4°) <1$\bar{2}$10>90.2° <0 14 $\bar{14}$ 1>60.0° <1$\bar{2}$10>7.4° -0.06
表4  可能存在的13种晶内复合孪晶结构和PVi与PVj-SVk间m' 的理论结算结果[15]
图4  晶间和晶内复合孪晶结构的形成机理[14,15]
[1] Christian J W, Mahajan S.Deformation twinning[J]. Prog. Mater Sci., 1995, 39: 1
[2] Partridge P G.The crystallography and deformation modes of hexagonal close-packed metals[J]. Metall. Rev., 1967, 12: 169
[3] Tu J, Zhang S Q.On the {10$\bar{1}$2} twinning growth mechanism in hexagonal close-packed metals[J]. Mater. Des., 2016, 96: 143
[4] Barnett M R, Keshavarz Z, Beer A G, et al.Non-Schmid behaviour during secondary twinning in a polycrystalline magnesium alloy[J]. Acta Mater., 2008, 56: 5
[5] Cizek P, Barnett M R.Characteristics of the contraction twins formed close to the fracture surface in Mg-3Al-1Zn alloy deformed in tension[J]. Scr. Mater. 2008, 59: 959
[6] Lentz M, Risse M, Schaefer N, et al.Strength and ductility with {1011}-{10$\bar{1}$2} double twinning in a magnesium alloy[J]. Nat. Commun., 2016, 7: 11068
[7] Martin é, Capolungo L, Jiang L, et al.Variant selection during secondary twinning in Mg-3%Al[J]. Acta Mater., 2010, 58: 3970
[8] Agnew S R, Duygulu ?.Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B[J]. Int. J. Plast., 2005, 21: 1161
[9] Hutchinson W B, Barnett M R.Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals[J]. Scr. Mater., 2010, 63: 737
[10] Koike J.Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature[J]. Metall. Mater. Trans., 2005, 36A: 1689
[11] Xu S, Liu T M, Chen H C, et al.Reducing the tension-compression yield asymmetry in a hot-rolled Mg-3Al-1Zn alloy via multidirectional pre-compression[J]. Mater. Sci. Eng., 2013, A565: 96
[12] Song B, Xin R L, Sun L Y, et al.Influencing factors and controlling methods of tension-compression asymmetry in magnesium alloys[J]. Chin. J. Nonferrous Met., 2014, 24: 1941(宋波, 辛仁龙, 孙立云等. 镁合金拉伸压缩不对称性的影响因素及控制方法[J]. 中国有色金属学报, 2014, 24: 1941)
[13] Shi Z Z, Zhang Y D, Wagner F, et al.Sequential double extension twinning in a magnesium alloy: Combined statistical and micromechanical analyses[J]. Acta Mater., 2015, 96: 333
[14] Shi Z Z.Compound cross-grain boundary extension twin structure and its related twin variant selection in a deformed Mg alloy[J]. J. Alloys Compd., 2017, 716: 128
[15] Shi Z Z, Xu J Y, Yu J, et al.Intragranular cross-level twin pairs in AZ31 Mg alloy after sequential biaxial compressions[J]. J. Alloys Compd., 2018, 749: 52
[16] Godet S, Jiang L, Luo A A, et al.Use of Schmid factors to select extension twin variants in extruded magnesium alloy tubes[J]. Scr. Mater., 2006, 55: 1055
[17] Jonas J J, Mu S J, Al-Samman T, et al.The role of strain accommodation during the variant selection of primary twins in magnesium[J]. Acta Mater., 2011, 59: 2046
[18] Xin R L, Guo C F, Xu Z R, et al.Characteristics of long {10$\bar{1}$2} twin bands in sheet rolling of a magnesium alloy[J]. Scr. Mater., 2014, 74: 96
[19] Shi Z Z, Liu X F.Characteristics of cross grain boundary contraction twin pairs and bands in a deformed Mg alloy[J]. J. Alloys Compd., 2017, 692: 274
[20] Hong X, Godfrey A, Liu W.Challenges in the prediction of twin transmission at grain boundaries in a magnesium alloy[J]. Scr. Mater., 2016, 123: 77
[21] Barnett M R, Nave M D, Ghaderi A.Yield point elongation due to twinning in a magnesium alloy[J]. Acta Mater., 2012, 60: 1433
[22] Park S H, Hong S G, Lee J H, et al.Multiple twinning modes in rolled Mg-3Al-1Zn alloy and their selection mechanism[J]. Mater. Sci. Eng., 2012, A532: 401
[23] Shi Z Z, Zhang Y D, Wagner F, et al.On the selection of extension twin variants with low Schmid factors in a deformed Mg alloy[J]. Acta Mater., 2015, 83: 17
[24] Shi Z Z.Secondary twin variant selection in Mg alloy after a strain-path change[J]. J. Alloys Compd., 2017, 696: 510
[25] Jain J, Zou J, Sinclair C W, et al.Double tensile twinning in a Mg-8Al-0. 5Zn alloy[J]. J. Microsc., 2010, 242: 26
[26] Mu S J, Jonas J J, Gottstein G.Variant selection of primary, secondary and tertiary twins in a deformed Mg alloy[J]. Acta Mater., 2012, 60: 2043
[27] Barnett M R, Stanford N, Ghaderi A, et al.Plastic relaxation of the internal stress induced by twinning[J]. Acta Mater., 2013, 61: 7859
[28] Yu Q, Wang J, Jiang Y Y, et al.Twin-twin interactions in magnesium[J]. Acta Mater., 2014, 77: 28
[29] Yu Q, Wang J, Jiang Y Y, et al.Co-zone {$\bar{1}$012} Twin interaction in magnesium single crystal[J]. Mater. Res. Lett., 2014, 2: 82
[30] Morrow B M, Cerreta E K, McCabe R J, et al. Toward understanding twin-twin interactions in hcp metals: Utilizing multiscale techniques to characterize deformation mechanisms in magnesium[J]. Mater. Sci. Eng., 2014, A613: 365
[31] Sun Q, Zhang X Y, Ren Y, et al. Interfacial structure of {10$\bar{1}$2} twin tip in deformed magnesium alloy [J]. Scr. Mater., 2014, 90-91: 41
[32] Zhang J, Xi G Q, Wan X, et al.The dislocation-twin interaction and evolution of twin boundary in AZ31 Mg alloy[J]. Acta Mater., 2017, 133: 208
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[3] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[4] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[5] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[7] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[8] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[9] 耿遥祥, 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8): 1044-1054.
[10] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[11] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[12] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[13] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[14] 王凯冬, 刘允中, 詹强坤, 黄斌. 形核剂的添加方式对选区激光熔化成形含锆Al-Cu-Mg合金显微组织与力学性能的影响[J]. 金属学报, 2022, 58(10): 1281-1291.
[15] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.