|
|
基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型 |
穆亚航1,2, 张雪1,2, 陈梓名3, 孙晓峰1( ), 梁静静1( ), 李金国1, 周亦胄1 |
1中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 2中国科学技术大学 材料科学与工程学院 沈阳 110016 3北京科技大学 智能科学与技术学院 北京 100083 |
|
Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning |
MU Yahang1,2, ZHANG Xue1,2, CHEN Ziming3, SUN Xiaofeng1( ), LIANG Jingjing1( ), LI Jinguo1, ZHOU Yizhou1 |
1Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3School of Intelligence Science and Technology, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
Yahang MU,
Xue ZHANG,
Ziming CHEN,
Xiaofeng SUN,
Jingjing LIANG,
Jinguo LI,
Yizhou ZHOU.
Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. Acta Metall Sin, 2023, 59(8): 1075-1086.
1 |
Lin X, Huang W D. High performance metal additive manufacturing technology applied in aviation field [J]. Mater. China, 2015, 34: 684
|
1 |
林 鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术 [J]. 中国材料进展, 2015, 34: 684
|
2 |
Sun X F, Song W, Liang J J, et al. Research and development in materials and processes of superalloy fabricated by laser additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
|
2 |
孙晓峰, 宋 巍, 梁静静 等. 激光增材制造高温合金材料与工艺研究进展 [J]. 金属学报, 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
|
3 |
Rappaz M, Drezet J M, Gremaud M. A new hot-tearing criterion [J]. Metall. Mater. Trans., 1999, 30A: 449
|
4 |
Kou S. A criterion for cracking during solidification [J]. Acta Mater., 2015, 88: 366
doi: 10.1016/j.actamat.2015.01.034
|
5 |
Yu H, Liang J J, Bi Z N, et al. Computational design of novel Ni superalloys with low crack susceptibility for additive manufacturing [J]. Metall. Mater. Trans., 2022, 53A: 1945
|
6 |
Xu J H, Kontis P, Peng R L, et al. Modelling of additive manufacturability of nickel-based superalloys for laser powder bed fusion [J]. Acta Mater., 2022, 240: 118307
doi: 10.1016/j.actamat.2022.118307
|
7 |
Jain S. Benchmarking hot cracking behavior during localised melting using a new standard test methodolgy and thermodynamic predictors [D]. Ames: Iowa State University, 2021
|
8 |
Qin H, Yang G Y, Zheng X W, et al. Effect of Gd content on hot-tearing susceptibility of Mg-6Zn-xGd casting alloys [J]. China Foundry, 2022, 19: 131
doi: 10.1007/s41230-022-1117-z
|
9 |
Qian X, Yang R G. Machine learning for predicting thermal transport properties of solids [J]. Mater. Sci. Eng., 2021, R146: 100642
|
10 |
Hart G L W, Mueller T, Toher C, et al. Machine learning for alloys [J]. Nat. Rev. Mater., 2021, 6: 730
doi: 10.1038/s41578-021-00340-w
|
11 |
Johnson N S, Vulimiri P S, To A C, et al. Invited review: Machine learning for materials developments in metals additive manufacturing [J]. Addit. Manuf., 2020, 36: 101641
|
12 |
Zhu C P, Li C, Wu D, et al. A titanium alloys design method based on high-throughput experiments and machine learning [J]. J. Mater. Res. Technol., 2021, 11: 2336
doi: 10.1016/j.jmrt.2021.02.055
|
13 |
Menou E, Rame J, Desgranges C, et al. Computational design of a single crystal nickel-based superalloy with improved specific creep endurance at high temperature [J]. Comp. Mater. Sci., 2019, 170: 109194
doi: 10.1016/j.commatsci.2019.109194
|
14 |
Khatavkar N, Swetlana S, Singh A K. Accelerated prediction of Vickers hardness of Co- and Ni-based superalloys from microstructure and composition using advanced image processing techniques and machine learning [J]. Acta Mater., 2020, 196: 295
doi: 10.1016/j.actamat.2020.06.042
|
15 |
Wu J J, Li Y H, Zhao J B, et al. Prediction of residual stress induced by laser shock processing based on artificial neural networks for FGH4095 superalloy [J]. Mater. Lett., 2021, 286: 129269
doi: 10.1016/j.matlet.2020.129269
|
16 |
Zhu Y L, Duan F M, Yong W, et al. Creep rupture life prediction of nickel-based superalloys based on data fusion [J]. Comp. Mater. Sci., 2022, 211: 111560
doi: 10.1016/j.commatsci.2022.111560
|
17 |
Luo Y W, Zhang B, Feng X, et al. Pore-affected fatigue life scattering and prediction of additively manufactured Inconel 718: An investigation based on miniature specimen testing and machine learning approach [J]. Mater. Sci. Eng., 2021, A802: 140693
|
18 |
Singer A R E, Jennings P H. Hot-shortness of the aluminium-silicon alloys of commercial purity [J]. J. Inst. Met., 1946, 73: 197
|
19 |
Clyne T W, Davies G J. The influence of composition on solidification cracking susceptibility in binary alloy systems [J]. Br. Foundryman, 1981, 74: 65
|
20 |
Yu H N, Liu S M, Zhou L, et al. Study on solidification behavior and hot tearing susceptibility of Mg-2xY-xNi alloys [J]. Int. J. Metalcast., 2021, 15: 995
doi: 10.1007/s40962-020-00531-1
|
21 |
Tang Y T, Panwisawas C, Ghoussoub J N, et al. Alloys-by-design: Application to new superalloys for additive manufacturing [J]. Acta Mater., 2021, 202: 417
doi: 10.1016/j.actamat.2020.09.023
|
22 |
Xu B, Yin H Q, Jiang X, et al. Computational materials design: Composition optimization to develop novel Ni-based single crystal superalloys [J]. Comp. Mater. Sci., 2022, 202: 111021
doi: 10.1016/j.commatsci.2021.111021
|
23 |
Shi Z X, Dong J X, Zhang M C, et al. Solidification characteristics and hot tearing susceptibility of Ni-based superalloys for turbocharger turbine wheel [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2737
doi: 10.1016/S1003-6326(14)63405-1
|
24 |
Zhao Y S, Zhang J, Song F Y, et al. Effect of trace boron on microstructural evolution and high temperature creep performance in Re-contianing single crystal superalloys [J]. Prog. Nat. Sci. Mater. Int., 2020, 30: 371
doi: 10.1016/j.pnsc.2020.05.003
|
25 |
Wang H W, Yang J X, Meng J, et al. Effects of B content on microstructure and high-temperature stress rupture properties of a high chromium polycrystalline nickel-based superalloy [J]. J. Alloys Compd., 2021, 860: 157929
doi: 10.1016/j.jallcom.2020.157929
|
26 |
Froeliger T, Després A, Toualbi L, et al. Interplay between solidification microsegregation and complex precipitation in a γ/γ' cobalt-based superalloy elaborated by directed energy deposition [J]. Mater. Charact., 2022, 194: 112376
doi: 10.1016/j.matchar.2022.112376
|
27 |
Xiong J, Shi S Q, Zhang T Y. Machine learning of phases and mechanical properties in complex concentrated alloys [J]. J. Mater. Sci. Technol., 2021, 87: 133
doi: 10.1016/j.jmst.2021.01.054
|
28 |
Sun X F, Jin T, Zhou Y Z, et al. Research progress of nickel-base single crystal superalloys [J]. Mater. China, 2012, 31(12): 1
|
28 |
孙晓峰, 金 涛, 周亦胄 等. 镍基单晶高温合金研究进展 [J]. 中国材料进展, 2012, 31(12): 1
|
29 |
Zhou Y Z, Volek A. Effect of carbon additions on hot tearing of a second generation nickel-base superalloy [J]. Mater. Sci. Eng., 2008, A479: 324
|
30 |
Zhou W Z, Tian Y S, Tan Q B, et al. Effect of carbon content on the microstructure, tensile properties and cracking susceptibility of IN738 superalloy processed by laser powder bed fusion [J]. Addit. Manuf., 2022, 58: 103016
|
31 |
Dong Y, Hao M S, Mu Y H, et al. Effect of carbon content on the microstructure and mechanical properties of GH3230 alloy formed by laser melting deposition [J]. Adv. Eng. Mater., 2023: 2201887
|
32 |
Hu Y, Yang X K, Kang W J, et al. Effect of Zr content on crack formation and mechanical properties of IN738LC processed by selective laser melting [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 1350
doi: 10.1016/S1003-6326(21)65582-6
|
33 |
Yu Q, Wang C S, Zhao Z S, et al. New Ni-based superalloys designed for laser additive manufacturing [J]. J. Alloys Compd., 2021, 861: 157979
doi: 10.1016/j.jallcom.2020.157979
|
34 |
Park J U, Jun S Y, Lee B H, et al. Alloy design of Ni-based superalloy with high γ' volume fraction suitable for additive manufacturing and its deformation behavior [J]. Addit. Manuf., 2022, 52: 102680
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|