Please wait a minute...
金属学报  2015, Vol. 51 Issue (12): 1457-1464    DOI: 10.11900/0412.1961.2015.00085
  本期目录 | 过刊浏览 |
Ni单晶体塑性应变的非均匀性与加工硬化*
王晓钢(),姜潮,韩旭
湖南大学汽车车身先进设计制造国家重点实验室, 长沙 410082
PLASTIC STRAIN HETEROGENEITY AND WORK HARDENING OF Ni SINGLE CRYSTALS
Xiaogang WANG(),Chao JIANG,Xu HAN
State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University,Changsha 410082
全文: PDF(1017 KB)   HTML
摘要: 

通过数字图像相关方法获取全场应变信息, 从应变非均匀性的角度研究Ni单晶体的加工硬化行为. 首先提出一种适用于描述单晶体变形的数字图像相关方法, 用于准确获取应变场. 拉伸实验结果表明, Ni单晶体的塑性应变具有显著的局部化特征, 这与滑移带的形成、发展密切相关. 根据应变场的演化特征, 3种变形机制可被确定, 且发现它们与材料的3个加工硬化阶段具有一一对应关系. 在位错理论框架下, 两者之间的内在联系得到了合理的解释, 并通过对材料微观结构演化的实验观测得到了很好的验证.

关键词 Ni单晶体加工硬化塑性变形数字图像相关非均匀性    
Abstract

Metals exhibit inhomogeneous deformation features under plastic strain, leading to the appearance and evolution of the deformation bands. The quantitative characterization of this effect is significant for an in-depth understanding of the plastic deformation and strengthening mechanisms of metals. In this work, the full-field strain information are obtained using digital image correlation method, and the work hardening behaviour in Ni single crystals is investigated from the angle of strain heterogeneity. First, a digital image correlation method, adapted for characterizing single crystal deformation, is proposed for the precise evaluation of strain field. The tensile test results show that the plastic strain in Ni single crystal manifests a distinct localization characteristic, which is closely linked to the slip band formation and development process. Based on the characteristics of the strain field evolution, 3 deformation regimes can be determined, which demonstrate a one-to-one correspondence to the 3 work hardening stages of the material. Some reasonable interpretations of their correlation are proposed within the framework of dislocation theories, which are verified through the experimental observations on the microstructure evolution of the material.

Key wordsNi single crystal    work hardening    plastic deformation    digital image correlation    heterogeneity
    
基金资助:* 国家自然科学基金项目11172096 和教育部高等学校全国优博论文作者专项基金项目201235 资助

引用本文:

王晓钢,姜潮,韩旭. Ni单晶体塑性应变的非均匀性与加工硬化*[J]. 金属学报, 2015, 51(12): 1457-1464.
Xiaogang WANG, Chao JIANG, Xu HAN. PLASTIC STRAIN HETEROGENEITY AND WORK HARDENING OF Ni SINGLE CRYSTALS. Acta Metall Sin, 2015, 51(12): 1457-1464.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00085      或      https://www.ams.org.cn/CN/Y2015/V51/I12/1457

图1  试样的几何尺寸示意图
图2  变形后的试样表面形貌
图3  最终变形状态下的轴向与横向位移场
图4  轴向应力-应变曲线及标记点处的von Mises等效应变场
图5  变形机制I, Ⅱ和ⅡI对应的典型von Mises等效应变(eeq)场
图6  变形机制I, Ⅱ和ⅡI下εeq在不同单元内的分布
图7  敏感指标sB在拉伸实验中的演化及3种变形机制的确定
图8  t-g和q-g曲线及加工硬化阶段
图9  不同应变水平下的位错密度(rw, rc, rt)
[1] Taylor G. Proc Roy Soc, 1934; 145A: 362
[2] Schmid E, Boas I W. Plasticity of Crystals. London: Chapman and Hall Ltd., 1950: 8
[3] Kocks U, Mecking H. Prog Mater Sci, 2003; 48: 171
[4] Sevillano J G. In: Mughrabi H ed., Plastic Deformation and Fracture of Materials. Weinheim: VCH, 1993: 23
[5] Li X W, Wang Z G, Sun S G, Wu S D, Li S X, Li G Y. Acta Metall Sin, 1998; 34: 552
[5] (李小武, 王中光, 孙守光, 吴世丁, 李守新, 李广义. 金属学报, 1998; 34: 552)
[6] Zhang Z F, Duan Q Q, Wang Z G. Acta Metall Sin, 2005; 41: 1143
[6] (张哲峰, 段启强, 王中光. 金属学报, 2005; 41: 1143)
[7] Magid K R, Florando J N, Lassila D H, LeBlanc M M, Tamura N, Morris J W. Philos Mag, 2009; 89: 77
[8] Shade P A, Wheeler R, Choi Y S, Uchic M D, Dimiduk D M, Fraser H L. Acta Mater, 2009; 57: 4580
[9] Takamura J. Bull Jpn Inst Met, 1973; 12: 505
[10] Takamura J. Trans Jpn Inst Met, 1987; 28: 165
[11] Chu T C, Ranson W F, Sutton M A. Exp Mech, 1985; 25: 232
[12] Sutton M A, Orteu J J, Schreier H. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. New York: Springer, 2009: 81
[13] Wang H W, Kang Y L, Xie H P. Adv Mech Sin, 2005; 35: 195
[13] (王怀文, 亢一澜, 谢和平. 力学进展, 2005; 35: 195)
[14] Pan B. PhD Dissertation, Tsinghua University, Beijing, 2007
[14] (潘 兵. 清华大学博士学位论文, 北京, 2007)
[15] Grediac M, Hild F. Full-Field Measurements and Identification in Solid Mechanics. New York: Wiley, 2012: 157
[16] Florando J N, LeBlanc M M, Lassila D H. Scr Mater, 2007; 57: 537
[17] Zhao Z, Ramesh M, Raabe D, Cuiti?o A M, Radovitzky R. Int J Plast, 2008; 24: 2278
[18] Efstathiou C, Sehitoglu H, Lambros J. Int J Plast, 2010; 26: 93
[19] Field D P, Magid K R, Mastorakos I N, Florando J N, Lassila D H, Morris J W. Philos Mag, 2010; 90: 1451
[20] Du H F, Zeng P, Zhao J Q, Lei L P, Fang G, Qu T M. Acta Metall Sin, 2013; 49: 17
[20] (杜泓飞, 曾 攀, 赵加清, 雷丽萍, 方 刚, 瞿体明. 金属学报, 2013; 49: 17)
[21] Cai Y L, Fu S H, Wang Y H, Tian C G, Gao Y, Cheng T, Zhang Q C. Acta Metall Sin, 2014; 50: 1491
[21] (蔡玉龙, 符师桦, 王玉辉, 田成刚, 高 越, 程 腾, 张青川. 金属学报, 2014; 50: 1491)
[22] Tasan C C, Diehl M, Yan D, Zambaldi C, Shanthraj P, Roters F, Raabe D. Acta Mater,?2014; 81: 386
[23] Zhang Y J. A Course of Computer Version. Beijing: Posts & Telecommunications Press, 2011: 189
[23] (章毓晋. 计算机视觉教程. 北京: 人民邮电出版社, 2011: 189)
[24] Efstathiou C, Sehitoglu H. Acta Mater, 2010; 58: 1479
[25] Besnard G, Hild F, Roux S. Exp Mech, 2006; 46: 789
[26] Lubliner J. Plasticity Theory. New York: Macmillan Publishing, 1990: 198
[27] Hirsch P B. Electron Microscopy of Thin Crystals. London: Butterworths, 1965: 286
[1] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[2] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[3] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[4] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[5] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[6] 吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
[7] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[8] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[9] 熊健,魏德安,陆宋江,阚前华,康国政,张旭. 位错密度梯度结构Cu单晶微柱压缩的三维离散位错动力学模拟[J]. 金属学报, 2019, 55(11): 1477-1486.
[10] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[11] 郭祥如, 孙朝阳, 王春晖, 钱凌云, 刘凤仙. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究[J]. 金属学报, 2018, 54(9): 1322-1332.
[12] 孙军, 李苏植, 丁向东, 李巨. 氢化空位的基本性质及其对金属力学行为的影响[J]. 金属学报, 2018, 54(11): 1683-1692.
[13] 侯陇刚, 刘明荔, 王新东, 庄林忠, 张济山. 高强7050铝合金超低温大变形加工与组织、性能调控[J]. 金属学报, 2017, 53(9): 1075-1090.
[14] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.
[15] 张金睿, 张晏玮, 郝玉琳, 李述军, 杨锐. 生物医用Ti-24Nb-4Zr-8Sn单晶合金塑性变形行为研究[J]. 金属学报, 2017, 53(10): 1385-1392.