Please wait a minute...
金属学报  2020, Vol. 56 Issue (3): 361-373    DOI: 10.11900/0412.1961.2019.00197
  研究论文 本期目录 | 过刊浏览 |
考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟
陈翔1,2,3,陈伟1,赵洋1,禄盛1,3,金晓清2,彭向和2()
1. 重庆邮电大学先进制造工程学院 重庆 400065
2. 重庆大学机械传动国家重点实验室 重庆 400044
3. 西安交通大学机械结构强度与振动国家重点实验室 西安 710049
Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation
CHEN Xiang1,2,3,CHEN Wei1,ZHAO Yang1,LU Sheng1,3,JIN Xiaoqing2,PENG Xianghe2()
1. School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
3. State Key Laboratory for Strength and Vibration of Mechanical Structural, Xi'an Jiaotong University, Xi'an 710049, China
全文: PDF(6436 KB)   HTML
摘要: 

基于考虑塑性变形和相变耦合效应的记忆合金(SMA)本构模型,对NiTiNb SMA管接头从扩径预处理到装配服役的全过程以及拉拔过程进行数值模拟。计算结果表明,由于相变和塑性变形的耦合作用,装配过程管接头内的von Mises应力、等效相变应变和等效塑性变形演化存在明显的规律。在一定尺寸范围内,随着扩径量的增加,拉拔力降低;不同壁厚尺寸配比的9种方案中,拉拔力随壁厚非线性变化,存在最优连接性能的方案;在室温变化范围内(0~40 ℃),服役环境温度对管接头连接系统的性能影响较小。随着临界相变应变的增加,管接头内的von Mises应力集中层由内侧向外侧移动,拉拔力在临界相变应变0.07~0.14的范围内逐渐增加。研究结果表明,接触时端部von Mises应力集中会显著增加系统的拉拔力。

关键词 形状记忆合金管接头相变塑性变形拉拔力    
Abstract

The pipe joints based on shape memory alloy (SMA) are widely used in various fields of fluid transport by virtue of their simple structure, easy assembly and high reliability. However, due to the complexity of the NiTiNb constitutive model, the plastic deformation and its effects have yet not been considered in the report of pipe joint connection system. In view of this background, this work constructs an SMA joint-steel pipe system (J-P system) and performs the finite element numerical simulation of the assembling process based on an SMA phenomenological constitutive model, where in the plastic-phase transformation coupling effect is considered. By altering the diameter expansion, wall thickness, service temperature and critical phase transformation, the change features of the von Mises stress, contact pressure and pull-out force of the J-P system are investigated. The results show that due to the coupling effect of phase transformation and plastic deformation, the evolution of Mises stress, equivalent transformation strain and equivalent plastic deformation in SMA joint show obvious regularity during assembly: in the loading stage, the phase transformation strain and plastic deformation increase with the increase of predeformation. At each subsequent loading step, the plastic strain remains unchanged. At the unloading stage, von Mises stress decreases and phase transformation strain remains unchanged. With temperature increase, the phase transformation strain decreases significantly and von Mises stress increases. At subsequent loading steps, von Mises stress and phase transformation strain remains unchanged. Within a certain size, the pull-out force decreases with the increase of diameter expansion; Among the 9 schemes with different wall thickness ratios, the pull-out force changes non-linearly with the wall thickness, and there is an optimal connection performance scheme. Within the range of room temperature (0~40 ℃), the service temperature has little impact on the performance of the J-P system; With the increase of the critical phase transformation, the stress concentration layer within the SMA joint moves from the inside to the outside, and the pull-out force increases gradually within the range of the critical phase transformation from 0.07 to 0.14. The results also show that the stress concentration at the end of contact region can significantly increase the pull-out force of the J-P system.

Key wordsshape memory alloy    pipe joint    phase transformation    plastic deformation    pull-out force
收稿日期: 2019-06-18     
ZTFLH:  TG139  
基金资助:国家自然科学基金项目(11802047);国家自然科学基金项目(51807019);重庆市基础与前沿项目(cstc2016jcyjA0594);重庆市基础与前沿项目(cstc2016jcyjA0443);机械传动国家重点实验室开放课题项目(SKLMT-KFKT-201711);机械结构强度与振动国家重点实验室开放基金项目(SV2018-KF-28)
通讯作者: 彭向和     E-mail: xhpeng@cqu.edu.cn
Corresponding author: Xianghe PENG     E-mail: xhpeng@cqu.edu.cn
作者简介: 陈 翔,男,1987年生,副教授,博士

引用本文:

陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
Xiang CHEN, Wei CHEN, Yang ZHAO, Sheng LU, Xiaoqing JIN, Xianghe PENG. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation. Acta Metall Sin, 2020, 56(3): 361-373.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00197      或      https://www.ams.org.cn/CN/Y2020/V56/I3/361

图1  NiTiNb管接头-钢材管道(J-P)系统2D模型
MaterialLrWH
NiTiNb SMA joint11.003.005.001.00
Connected pipe7.502.003.220.61
表1  NiTiNb SMA J-P系统3D模型尺寸 (mm)
图2  NiTiNb J-P系统有限元3D模型及剖视图
图3  装配及拉拔过程示意图以及各阶段不同变量的变化关系曲线
图4  装配过程SMA管接头内选取点的von Mises应力和环向应力变化
图5  装配步骤2到3对应加载点SMA管接头截面上von Mises应力和环向应力分布云图
图6  加载步结束时SMA管接头横截面von Mises应力、等效相变应变和等效塑性应变分布云图
图7  不同扩径量(h)下的von Mises应力云图
图8  不同h下NiTiNb SMA管接头内表面接触压力云图
图9  拉拔力与扩径量变化关系图
SchemeLJrJWJ
J111.003.005.60
J211.003.005.00
J311.003.004.40
表2  NiTiNb SMA 管接头尺寸参数设定表 (mm)
SchemeLPrPWP
P17.502.003.10
P27.502.003.16
P37.502.003.22
表3  被连接管尺寸参数设定表 (mm)

Scheme

NiTiNb SMA jointConnected pipe
rJWJHJrPWPHP
13.005.601.302.003.100.55
23.160.58
33.220.61
43.005.001.002.003.100.55
53.160.58
63.220.61
73.004.400.702.003.100.55
83.160.58
93.220.61
表4  NiTiNb J-P系统尺寸参数设定方案表 (mm)
图10  方案1~9的NiTiNb SMA管接头内表面接触压力云图
图11  接触面积和拉拔力随被连接管外半径变化关系曲线
图12  拉拔力随温度变化曲线
图13  不同临界相变应变(εL)下的应力-应变曲线
图14  不同临界相变应变下NiTiNb J-P 系统的von Mises应力云图和NiTiNb SMA管接头横截面von Mises应力云图
图15  不同临界相变应变下管接头内表面接触压力云图
图16  临界相变应变与拉拔力关系曲线
图17  不同因素对拉拔力的影响比重
[1] Quan D, Hai X. Shape memory alloy in various aviation field [J]. Proc. Eng., 2015, 99: 1241
[2] Dordoni E, Meoli A, Wu W, et al. Fatigue behaviour of nitinol peripheral stents: The role of plaque shape studied with computational structural analyses [J]. Med. Eng. Phys., 2014, 36: 842
[3] Hartl D J, Lagoudas D C, Calkins F T. Advanced methods for the analysis, design, and optimization of SMA-based aerostructures [J]. Smart Mater. Struct., 2011, 20: 094006
[4] Ochoński W. Application of shape memory materials in fluid sealing technology [J]. Ind. Lubr. Tribol., 2010, 62: 99
[5] Chen X, Peng X H, Chen B, et al. Experimental investigation to thermal-mechanical behavior of Ni47Ti44Nb9 SMA under pure tension and pure torsion [J]. J. Alloys Compd., 2014, 610: 151
[6] Zhang C S, Wang Y Q, Chai W, et al. The study of constitutional phases in a Ni47Ti44Nb9 shape memory alloy [J]. Mater. Chem. Phys., 1991, 28: 43
[7] Zhao L Z, Duerig T W, Wayman C M. Transformation and mechanical behavior of Ni47Ti44Nb9 shape memory alloy [A]. MRS International Meeting on Advanced Materials [C]. Tokyo, Japan, 1989: 171
[8] Shu X Y, Lu S Q, Li G F, et al. Nb solution influencing on phase transformation temperature of Ni47Ti44Nb9 alloy [J]. J. Alloys Compd., 2014, 609: 156
[9] Piotrowski B, Ben Zineb T, Patoor E, et al. Modeling of niobium precipitates effect on the Ni47Ti44Nb9 shape memory alloy behavior [J]. Int. J. Plast., 2012, 36: 130
[10] Arghavani J, Auricchio F, Naghdabadi R. A finite strain kinematic hardening constitutive model based on hencky strain: General framework, solution algorithm and application to shape memory alloys [J]. Int. J. Plast., 2011, 27: 940
[11] Hartl D J, Chatzigeorgiou G, Lagoudas D C. Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys [J]. Int. J. Plast., 2010, 26: 1485
[12] Yu C, Kang G Z, Song D, et al. Micromechanical constitutive model considering plasticity for super-elastic NiTi shape memory alloy [J]. Comput. Mater. Sci., 2012, 56: 1
[13] Zhou B, Zhao S C. A constitutive model of shape memory alloy with temperature memory effect [J]. Sci. Sin.(Phys. Mech. Astronom., 2013, 43: 1084
[13] 周 博, 赵士成. 考虑温度记忆效应的形状记忆合金本构模型 [J]. 中国科学: 物理学 力学 天文学, 2013, 43: 1084
[14] Peng X, Yang Y, Huang S. A comprehensive description for shape memory alloys with a two-phase constitutive model [J]. Int. J. Solids Struct., 2001, 38: 6925
[15] Brinson L C. One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable [J]. J. Intell. Mater. Syst. Struct., 1993, 4: 229
[16] Jiang S Y, Liang Y L, Zhang Y Q, et al.Influence of addition of Nb on phase transformation, microstructure and mechanical properties of equiatomic NiTi SMA [J]. J. Mater. Eng. Perform., 2016, 25: 4341
[17] Uchida K, Shigenaka N, Sakuma T, et al. Effects of pre-strain and heat treatment temperature on phase transformation temperature and shape recovery stress of Ti-Ni-Nb shape memory alloys for pipe joint applications [J]. Mater. Trans., 2008, 49: 1650
[18] Chen B. Research of micro and macro mechanical behavior of Ni47Ti44Nb9 shape memory alloy [D]. Chongqing: Chongqing University, 2013
[18] 陈 斌. 镍钛铌形状记忆合金宏细观力学行为研究 [D]. 重庆: 重庆大学, 2013
[19] Chen B, Peng X, Chen X, et al. A three-dimensional model of shape memory alloys under coupled transformation and plastic deformation [J]. CMC, 2012, 30: 145
[20] Piotrowski B, Ben Zineb T, Patoor E, et al. A finite element-based numerical tool for Ni47Ti44Nb9 SMA structures design: Application to tightening rings [J]. J. Intell. Mater. Syst. Struct., 2012, 23: 141
[21] Xu X, Kan Q H, Kang G Z. Finite element analysis of NiTi shape memory alloy pipe coupling [J]. J. Sichuan Univ. Sci. Eng. (Nat. Sci. Ed.), 2016, 29(4: 26
[21] 徐 祥, 阚前华, 康国政. 镍钛形状记忆合金管接头有限元分析 [J]. 四川理工学院学报(自然科学版), 2016, 29(4): 26
[22] Kang Z T, Zhou B, Xue S F. Finite element numerical simulation on thermo-mechanical coupling behavior in shape memory alloy pipe connection [J]. J. Mech. Eng., 2018, 54(18): 68
[22] 康泽天, 周 博, 薛世峰. 形状记忆合金管接头热机耦合行为的有限元数值模拟 [J]. 机械工程学报, 2018, 54(18): 68
[23] Ma Y, Li W. Structure optimization and finite element analysis of shape memory alloy coupling [J]. J. Northeastern Univ. (Nat. Sci)., 2013, 34: 1166
[23] 马 彦, 李 威. 形状记忆合金管接头结构优化与有限元分析 [J]. 东北大学学报(自然科学版), 2013, 34: 1166
[24] Zhi Y H, Liu Y S, Yue Z F. Finite element analysis of shape memory alloy joint under different loads [J]. Mach. Des. Manuf., 2009, (2): 4
[24] 智友海, 刘永寿, 岳珠峰. 不同载荷下形状记忆合金管接头性能的有限元分析 [J]. 机械设计与制造, 2009, (2): 4
[25] Zhang H B, Wang J, Jin W, et al. Coupling force simulation of TiNiFe shape memory alloy pipe-coupling [J]. Chin. J. Nonferrous Met., 2010, 20(Spec.1): 510
[25] 张慧博, 王 健, 金 伟等. TiNiFe形状记忆合金管接头应力场模拟 [J]. 中国有色金属学报, 2010, 20(专辑1): 510
[26] Yin X Q, Gao B D, Mi X J. Numerical simulation of radial pressures for TiNiNb pipe-couplings [J]. Chin. J. Rare Met., 2008, 32: 579
[26] 尹向前, 高宝东, 米绪军. TiNiNb形状记忆合金管接头径向压应力的模拟计算 [J]. 稀有金属, 2008, 32: 579
[27] Zhang H B, Jin W, Yang R. 3D finite element simulation of pull-out force of TiNiFe shape memory pipe coupling with inner convex [J]. Acta Metall. Sin., 2012, 48: 1520
[27] 张慧博, 金 伟, 杨 锐. 内脊型TiNiFe记忆合金管接头拉脱力的三维有限元模拟 [J]. 金属学报, 2012, 48: 1520
[28] Chen Q, Wang K L, Lu S Q, et al. Numerical simulation analysis on Φ10 mm NiTiNb shape memory alloy pipe-coupling [J]. Hot Work. Technol., 2017, 46(2): 81
[28] 陈 强, 王克鲁, 鲁世强等. Φ10 mm NiTiNb形状记忆合金管接头数值模拟分析 [J]. 热加工工艺, 2017, 46(2): 81
[29] Chen X, Chen W, Lu S, et al. Thermodynamic performance test and phenomenological constitutive model construction of NiTiNb shape memory alloy [J]. J. Mech. Eng., accepted
[29] 陈 翔, 陈 伟, 禄 盛等. NiTiNb记忆合金热力学性能试验及其唯象学本构模型研究 [J]. 机械工程学报, (已录用)
[30] Lemaitre J, Chaboche J L, Maji A K. Mechanics of solid materials [J]. J. Eng. Mech., 1993, 119: 642
[31] Souza A C, Mamiya E N, Zouain N. Three-dimensional model for solids undergoing stress-induced phase transformations [J]. Eur. J. Mech., 1998, 17A: 789
[32] Yan J L, Shen Y P, Chen R. The finite element analysis of the shape memory alloy pipe connector [J]. Chin. J. Theor. Appl. Mech., 1998, 30: 370
[32] 严金良, 沈亚鹏, 陈 儒. 形状记忆合金管接头空间轴对称有限元分析 [J]. 力学学报, 1998, 30: 370
[33] Zhang C S, Zhao L C, Duerig T W, et al. Effects of deformation on the transformation hysteresis and shape memory effect in a Ni47Ti44Nb9 alloy [J]. Scr. Metall. Mater., 1990, 24: 1807
[34] Chen X, Peng X H, Chen B, et al. Experimental investigation on transformation, reorientation and plasticity of Ni47Ti44Nb9 SMA under biaxial thermal-mechanical loading [J]. Smart Mater. Struct., 2015, 24: 075025
[1] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[2] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[3] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[4] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[5] 吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
[6] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[7] 顾晨, 杨平, 毛卫民. 轧制工艺对低牌号无取向电工钢相变退火组织、织构与磁性能的影响[J]. 金属学报, 2019, 55(2): 181-190.
[8] 熊健,魏德安,陆宋江,阚前华,康国政,张旭. 位错密度梯度结构Cu单晶微柱压缩的三维离散位错动力学模拟[J]. 金属学报, 2019, 55(11): 1477-1486.
[9] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.
[10] 石章智, 张敏, 黄雪飞, 刘雪峰, 张文征. 可时效强化Mg-Sn基合金的研究进展[J]. 金属学报, 2019, 55(10): 1231-1242.
[11] 崔立山, 姜大强. 基于应变匹配的高性能金属纳米复合材料研究进展[J]. 金属学报, 2019, 55(1): 45-58.
[12] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[13] 郭祥如, 孙朝阳, 王春晖, 钱凌云, 刘凤仙. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究[J]. 金属学报, 2018, 54(9): 1322-1332.
[14] 徐士新, 余伟, 李舒笳, 王坤, 孙齐松. 预变形温度对纳米贝氏体相变动力学及组织的影响[J]. 金属学报, 2018, 54(8): 1113-1121.
[15] 贺志荣, 吴佩泽, 刘康凯, 冯辉, 杜雨青, 冀荣耀. 激冷Ti-47Ni合金薄带的组织、相变和形状记忆行为[J]. 金属学报, 2018, 54(8): 1157-1164.