|
|
γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为 |
王世宏1,李健1( ),葛昕1,2,柴锋1,罗小兵1,杨才福1,苏航1 |
1. 钢铁研究总院工程用钢研究所 北京 100081 2. 安徽工业大学材料科学与工程学院 马鞍山 243002 |
|
Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite |
WANG Shihong1,LI Jian1( ),GE Xin1,2,CHAI Feng1,LUO Xiaobing1,YANG Caifu1,SU Hang1 |
1. Department of Structure Steels, Central Iron and Steel Research Institute, Beijing 100081, China 2. School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China |
引用本文:
王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
Shihong WANG,
Jian LI,
Xin GE,
Feng CHAI,
Xiaobing LUO,
Caifu YANG,
Hang SU.
Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite[J]. Acta Metall Sin, 2020, 56(3): 311-320.
[1] | De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels [J]. Acta Mater., 2018, 142: 283 | [2] | Kim H, Ha Y, Kwon K H, et al. Interpretation of cryogenic-temperature charpy impact toughness by microstructural evolution of dynamically compressed specimens in austenitic 0.4C-(22-26)Mn steels [J]. Acta Mater., 2015, 87: 332 | [3] | Jee K K, Jang W Y, Baik S H, et al. Damping mechanism and application of Fe-Mn based alloys [J]. Mater. Sci. Eng., 1999, A273-275: 538 | [4] | Watanabe Y, Sato H, Nishino Y, et al. Training effect on damping capacity in Fe-20 mass% Mn binary alloy [J]. Mater. Sci. Eng., 2008, A490: 138 | [5] | Lee Y K, Jun J H, Choi C S. Damping capacity in Fe-Mn binary alloys [J]. ISIJ Int., 1997, 37: 1023 | [6] | Kwon K H, Jeong J S, Choi J K, et al. In-situ neutron diffraction analysis on deformation behavior of duplex high Mn steel containing austenite and ?-martensite [J]. Met. Mater. Int., 2012, 18: 751 | [7] | De Cooman B C, Kwon O, Chin K G. State-of-the-knowledge on TWIP steel [J]. Mater. Sci. Technol., 2012, 28: 513 | [8] | Bouaziz O, Allain S, Scott C P, et al. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships [J]. Curr. Opin. Solid State Mater. Sci., 2011, 15: 141 | [9] | Scott C, Allain S, Faral M, et al. The development of a new Fe-Mn-C austenitic steel for automotive applications [J]. Rev. Métall., 2006, 103: 293 | [10] | Pierce D T, Jiménez J A, Bentley J, et al. The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation [J]. Acta Mater., 2015, 100: 178 | [11] | Lee S J, Han J, Lee S, et al. Design for Fe-high Mn alloy with an improved combination of strength and ductility [J]. Sci. Rep., 2017, 7: 3573 | [12] | Seol J B, Jung J E, Jang Y W, et al. Influence of carbon content on the microstructure, martensitic transformation and mechanical properties in austenite/ε-martensite dual-phase Fe-Mn-C steels [J]. Acta Mater., 2013, 61: 558 | [13] | Kim J C, Han D W, Baik S H, et al. Effects of alloying elements on martensitic transformation behavior and damping capacity in Fe-17Mn alloy [J]. Mater. Sci. Eng., 2004, A378: 323 | [14] | Shin S, Kwon M, Cho W, et al. The effect of grain size on the damping capacity of Fe-17 wt%Mn [J]. Mater. Sci. Eng., 2017, A683: 87 | [15] | Seo Y S, Lee Y K, Choi C S. Effect of deformation on damping capacity and microstructure of Fe-22%Mn-8%Co alloy [J]. Mater. Trans., 2005, 46: 1274 | [16] | Wang H J, Wang H, Zhang R Q, et al. Effect of high strain amplitude and pre-deformation on damping property of Fe-Mn alloy [J]. J. Alloys Compd., 2019, 770: 252 | [17] | Choi W S, De Cooman B C. Effect of carbon on the damping capacity and mechanical properties of thermally trained Fe-Mn based high damping alloys [J]. Mater. Sci. Eng., 2017, A700: 641 | [18] | Oliver J, Jonsson J Y, Talonen J. Method for manufacturing and utilizing ferritic-austenitic stainless steel with high formability [P]. US Pat, 20130032256. 2013 | [19] | Takaki S, Nakatsu H, Tokunaga Y. Effects of austenite grain size on ε martensitic transformation in Fe-15mass%Mn alloy [J]. Mater. Trans., JIM, 1993, 34: 489 | [20] | Zhang W N, Liu Z Y, Wang G D. Martensitic transformation induced by deformation and work-hardening behavior of high manganese TRIP steels [J]. Acta Metall. Sin., 2010, 46: 1230 | [20] | 张维娜, 刘振宇, 王国栋. 高锰TRIP钢的形变诱导马氏体相变及加工硬化行为 [J]. 金属学报, 2010, 46: 1230 | [21] | Lu F Y, Yang P, Meng L, et al. Microstructure, mechanical properties and crystallography analysis of Fe-22Mn TRIP/TWIP steel after tensile deformation [J]. Acta Metall. Sin., 2013, 49: 1 | [21] | 鲁法云, 杨 平, 孟 利等. Fe-22Mn TRIP/TWIP钢拉伸过程组织、性能及晶体学行为分析 [J]. 金属学报, 2013, 49: 1 | [22] | Yang J H, Wayman C M. On secondary variants formed at intersections of ε martensite variants [J]. Acta Metall. Mater., 1992, 40: 2011 | [23] | Fujita H, Ueda S. Stacking faults and f.c.c. (γ) → h.c.p. (ε) transformation in 18/8-type stainless steel [J]. Acta Metall., 1972, 20: 759 | [24] | Grunes R L, D'Antonio C, Mukherjee K. A study of α′ martensite nucleation in the iron-15% Mn alloy [J]. Mater. Sci. Eng., 1972, 9: 1 | [25] | Chen J, Zhang W N, Liu Z Y, et al. Microstructural evolution and deformation mechanism of a Fe-15Mn alloy investigated by electron back-scattered diffraction and transmission electron microscopy [J]. Mater. Sci. Eng., 2017, A698: 198 | [26] | Xu Z Y. Martensitic Transformation and Martensite [M]. 2nd Ed., Beijing: Science Press, 1999: 133 | [26] | 徐祖耀. 马氏体相变与马氏体 [M]. 第2版. 北京: 科学出版社, 1999: 133 | [27] | Nakano J, Jacques P J. Effects of the thermodynamic parameters of the hcp phase on the stacking fault energy calculations in the Fe-Mn and Fe-Mn-C systems [J]. Calphad, 2010, 34: 167 | [28] | Jun J H, Choi C S. Change in stacking-fault energy with Mn content and its influence on the damping capacity of the austenitic phase in Fe-high Mn alloys [J]. J. Mater. Sci., 1999, 34: 3421 | [29] | Ma R Z, Wang S L. The γ?ε martensitic transformation in iron-manganese alloys [J]. Trans. Met. Heat Treat., 1982, 3(2): 30 | [29] | 马如璋, 王世亮. 铁锰合金中γ?ε马氏体相变 [J]. 金属热处理学报, 1982, 3(2): 30 | [30] | Kikuchi T, Kajiwara S, Tomota Y. Formation process of lamella structures by deformation in an Fe-Mn-Si-Cr-Ni shape memory alloy [J]. J. Phys. IV, 1995, 5: C8-445 | [31] | Tsuzaki K, Fukasaku S I, Tomota Y, et al. Effect of prior deformation of austenite on the γ→ε martensitic transformation in Fe-Mn alloys [J]. Mater. Trans., JIM, 1991, 32: 222 | [32] | Li X, Chen L Q, Zhao Y, et al. Influence of original austenite grain size on tensile properties of a high-manganese transformation-induced plasticity (TRIP) steel [J]. Mater. Sci. Eng., 2018, A715: 257 | [33] | Cina B. A transitional h.c.p. phase in the γ→α transformation in certain Fe-base alloys [J]. Acta Metall., 1958, 6: 748 | [34] | Wang Y H, Huang X M, Zhang L, et al. Characterization and simulation of strain-hardening behavior of a cold-rolled dual phase steel of 780 MPa grade by means of modified C-J method and RVE model [J]. Chin. J. Mater. Res., 2017, 31: 801 | [34] | 王彦华, 黄兴民, 张 雷等. 基于修正C-J法和RVE模型的780 MPa级冷轧双相钢的应变硬化行为 [J]. 材料研究学报, 2017, 31: 801 | [35] | Kwon K H, Suh B C, Baik S I, et al. Deformation behavior of duplex austenite and ε-martensite high-Mn steel [J]. Sci. Technol. Adv. Mater., 2013, 14: 014204 | [36] | Yu Y N. Metallography Principle [M]. 2nd Ed., Beijing: Metallurgical Industry Press, 2013: 325 | [36] | 余永宁. 金属学原理 [M]. 第2版. 北京: 冶金工业出版社, 2013: 325 | [37] | Pramanik S, Gazder A A, Saleh A A, et al. Nucleation, coarsening and deformation accommodation mechanisms of ε-martensite in a high manganese steel [J]. Mater. Sci. Eng., 2018, A731: 506 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|