Please wait a minute...
金属学报  2019, Vol. 55 Issue (9): 1185-1194    DOI: 10.11900/0412.1961.2019.00085
  研究论文 本期目录 | 过刊浏览 |
多场耦合作用下GH4169合金变形行为与强韧化机制
王磊(),安金岚,刘杨,宋秀
东北大学材料各向异性与织构教育部重点实验室 沈阳 110819
Deformation Behavior and Strengthening-Toughening Mechanism of GH4169 Alloy with Multi-Field Coupling
WANG Lei(), AN Jinlan, LIU Yang, SONG Xiu
Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
全文: PDF(28386 KB)   HTML
摘要: 

研究了脉冲电流/温度/应力多场耦合作用下,镍基GH4169合金的变形行为与强韧化机理。结果表明,GH4169合金在脉冲电流/温度/应力作用下,GH4169合金变形抗力降低、塑性变形能力提高,在高温下脉冲电流的引入加剧了原子热振动、金属晶格Pereils力下降,由此降低了合金变形抗力,增强了合金塑性变形协调能力。而当GH4169合金经脉冲电流/温度场耦合时效处理,则可以显著提高合金的高温强度和韧性,脉冲电流/温度耦合作用提高了合金基体空位缺陷密度,促进了其在随后高温变形过程中析出大量数纳米级新γ"相强化相,而脉冲电流/温度场耦合时效处理过程中析出、粗化的γ"相以及其与合金高温变形中新析出数纳米级γ"相的协同作用,使合金实现了强韧化。

关键词 GH4169合金多场耦合塑性变形强韧化    
Abstract

The superalloy is one of key metal materials, representing the level of scientific and technological development. Nickel-based superalloy is the most important which has been widely used for rotating component of aerospace. Nickel-based GH4169 alloy shows excellent combination properties including good fatigue property, excellent oxidation and corrosion resistance, as well as the microstructure stability during long-term ageing. The using amount of GH4169 alloy is about 45% of total wrought superalloys. For satisfying high performance of aero-engine, both strength and ductility of GH4169 alloy at high temperature are required to be simultaneously improved for safety servicing. It is an effective method to strengthen alloys by adding alloying elements. The alloying element addition ratio of GH4169 alloy is more than 40%, which unavoidably leads to hard deforming and plasticity declining, so that it restricts the further application of the alloy. Therefore, it is key to find methods realizing strengthening-toughening and without any losing of hot-deforming ability. In this work, the plastic deformation behavior and strengthening-toughening mechanisms of GH4169 alloy with multi-field coupling (electric-pulse current (EPC)/temperature/stress) were investigated. The results show that the deformation resistance of GH4169 alloy decreases and plastic deformation ability increases with multi-field coupling. The thermal vibration of atoms enhances and thus leads to decreasing of Peierls force with multi-field coupling, which is the essential factor on decreasing of deformation resistance and increasing of plastic deformation coordinate ability. When the alloy aged with electric-pulse treatment (EPT)/temperature coupling, the ultimate strength, yield strength and fracture elongation increase simultaneously at elevated temperatures. The vacancy concentration increases of the alloy aged with EPT/temperature coupling. Vacancy induces ultrafine nm-sized γ" phase to precipitate during tensile deformation at high temperature, which is the key factor on strength and ductility improvement. At the same time, because of the EPT/temperature coupling ageing, part of γ" phases precipitate around dislocation, while, due to the increasing of γ" phase size, the ductility of the alloy will be improved. With the multi-field coupling treatment, the strengthening-toughening of GH4169 alloy can be realized depended on an appropriate distribution of two kind sizes of γ" phase.

Key wordsGH4169 alloy    multi-field coupling    plastic deformation    strengthening-toughening
收稿日期: 2019-03-27     
ZTFLH:  TG132.3  
基金资助:国家自然科学基金项目(Nos.U1708253,51571052);沈阳航空航天大学校引进人才科研启动基金项目(No.18YB55)
通讯作者: 王磊     E-mail: wanglei@mail.neu.edu.cn
Corresponding author: Lei WANG     E-mail: wanglei@mail.neu.edu.cn
作者简介: 王 磊,男,1961年生,教授,博士

引用本文:

王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
WANG Lei, AN Jinlan, LIU Yang, SONG Xiu. Deformation Behavior and Strengthening-Toughening Mechanism of GH4169 Alloy with Multi-Field Coupling. Acta Metall Sin, 2019, 55(9): 1185-1194.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00085      或      https://www.ams.org.cn/CN/Y2019/V55/I9/1185

图1  拉伸试样尺寸
图2  GH4169合金固溶处理显微组织的SEM像、TEM像及SAED花样
Temperature / ℃Frequency / Hzσb / MPaσs / MPaδk / %
750067132119.4
1067033319.2
3063730018.3
4051532521.8
80005424439.2
1045737521.9
3042035826.2
4029424129.1
850033731332.1
1026422933.9
3019419436.5
4015115140.3
表1  GH4169合金耦合场拉伸性能
图3  GH4169合金耦合场拉伸变形断口形貌
图4  GH4169合金耦合场拉伸中不同阶段移除和恢复脉冲电流应力-应变曲线
图5  GH4169合金800 ℃耦合场下拉伸变形5%时位错组态
图6  GH4169合金800 ℃耦合场下拉伸变形至12%变形量时γ"相TEM像
图7  GH4169合金800 ℃耦合场下拉伸变形断口侧面组织的SEM像
图8  GH4169合金在800 ℃耦合场下拉伸变形至12%时δ相形貌
图9  750 ℃常规时效及耦合场时效处理20 min后GH4169合金750 ℃高温拉伸变形应力-应变曲线
图10  800 ℃常规时效及耦合场时效处理不同时间后GH4169合金800 ℃拉伸变形应力-应变曲线
图11  800 ℃常规时效及耦合场时效处理20 min后GH4169合金800 ℃拉伸变形5%时显微组织的TEM像
图12  800 ℃耦合场时效处理20 min后GH4169合金在800 ℃拉伸变形5%时数纳米级γ"相形貌
图13  800 ℃耦合场时效处理20 min后GH4169合金800 ℃拉伸断口侧面显微组织的TEM像
[1] DengG J, TuS T, ZhangX C, , et al. Small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169 at 650 ℃ in air [J]. Eng. Fract. Mech., 2016, 153: 35
[2] LiY J, TengY F, FengX H, , et al. Effects of pulsed magnetic field on microsegregation of solute elements in a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2017, 33: 105
[3] ZhangJ, LouL H. Basic research in development and application of cast superalloy [J]. Acta Metall. Sin., 2018, 11: 1637
[3] 张 健, 楼琅洪. 铸造高温合金研发中的应用基础研究 [J]. 金属学报, 2018, 11: 1637
[4] GongL, ChenB, DuZ H, , et al. Investigation of solidification and segregation characteristics of cast Ni-base superalloy K417G [J]. J. Mater. Sci. Technol., 2018, 34: 541
[5] LiuG, CantóJ S, WinwoodS, , et al. The effects of microstructure and microtexture generated during solidification on deformation micromechanism in IN713C nickel-based superalloy [J]. Acta Mater., 2018, 148: 391
[6] ZhouX, SongJ. Effects of alloying elements on vacancies and vacancy-hydrogen clusters at coherent twin boundaries in nickel alloys [J]. Acta Mater., 2018, 148: 9
[7] RaoY, SmithT M, MillsM J, , et al. Segregation of alloying elements to planar faults in γ'-Ni3Al [J]. Acta Mater., 2018, 148: 173
[8] XiM Z, ZhouW, ShangJ Y, , et al. Effect of heat treatment on microstructure and mechanical properties of consecutive point-mode forging and laser rapid forming GH4169 alloy [J]. Acta Metall. Sin., 2017, 53: 239
[8] 席明哲, 周 玮, 尚俊英等. 热处理对连续点式锻压激光快速成形GH4169合金组织与拉伸性能的影响 [J]. 金属学报, 2017, 53: 239
[9] MedeirosS C, PrasadY V R K, FrazierW G, , et al. Microstructural modeling of metadynamic recrystallization in hot working of IN 718 superalloy [J]. Mater. Sci. Eng., 2000, A293: 198
[10] WangJ G, LiuD, YangY H. Mechanisms of non-uniform microstruc-ture evolution in GH4169 alloy during heating process [J]. Acta Metall. Sin., 2016, 52: 707
[10] 王建国, 刘 东, 杨艳慧. GH4169合金非均匀组织在加热过程中的演化机理 [J]. 金属学报, 2016, 52: 707
[11] LiuY, WangL, DingY, , et al. Effects of electric field treatment on microstructure and deformation behavior of GH4199 superalloy [J]. Chin. J. Nonferrous Met., 2006, 16: 1749
[11] 刘 杨, 王 磊, 丁 扬等. 电场处理对GH4199合金组织与变形行为的影响 [J]. 中国有色金属学报, 2006, 16: 1749
[12] WangL, LiuY, CuiT, , et al. Effects of electric-field treatment on a Ni-base superalloy [J]. Rare Met., 2007, 26: 210
[13] LiuY, WangL, FengF, , et al. Effects of electropulsing treatment on coarsening behavior of γ' phase in a nikel base superalloy [J]. J. Mater. Metall., 2011, 10: 288
[13] 刘 杨, 王 磊, 冯 飞等. 脉冲电流对一种镍基高温合金γ'相粗化行为的影响 [J]. 材料与冶金学报, 2011, 10: 288
[14] WangL, AnJ L, LiuY, , et al. Influence of electric field treatment on precipitation behavior of δ phase in GH4169 superalloy [J]. Acta Metall. Sin., 2015, 51: 1235
[14] 王 磊, 安金岚, 刘 杨等. 静电场处理对GH4169合金中δ相析出行为的影响 [J]. 金属学报, 2015, 51: 1235
[15] WangL, WangY, LiuY, , et al. Coarsening behavior of γ′ and γ" phases in GH4169 superalloy by electric field treatment [J]. Int.J.Miner.Metall. Mater., 2013, 20: 861
[16] BulsaraA R, GammaitoniL. Tuning in to noise [J]. Phys. Today, 1996, 49: 39
[17] TroitskiiO A, SpitsynV I, SokolovN V, , et al. Electroplastic drawing of stainless steel [J]. Soviet Phys. Dokl., 1977, 22: 769
[18] AntolovichS D, ConradH. The effects of electric currents and fields on deformation in metals, ceramics, and ionic materials: An interpretive survey [J]. Mater. Manuf. Processes, 2004, 19: 587
[19] XuX F, ZhaoY G, MaB D, , et al. Rapid grain refinement of 2024 Al alloy through recrystallization induced by electropulsing [J]. Mater. Sci. Eng., 2014, A612: 223
[20] WangL, LiuM C, HuangJ C, , et al. Effect of temperature on the yield strength of a binary CuZr metallic glass: Stress-induced glass transition [J]. Intermetallics, 2012, 26: 162
[21] YadavS K, RamprasadR, MisraA, , et al. Core structure and Peierls stress of edge and screw dislocations in TiN: A density functional theory study [J]. Acta Mater., 2014, 74: 268
[22] WuR H, SandfeldS. A dislocation dynamics-assisted phase field model for Nickel-based superalloys: the role of initial dislocation density and external stress during creep [J]. J. Alloys Compd., 2017, 703: 389
[23] YangD Z. Dislocations and Strengthening Mechanisms of Metals [M]. Harbin: Harbin Institute of Technology Press, 1991: 107
[23] 杨德庄. 位错与金属强化机制 [M]. 哈尔滨: 哈尔滨工业大学出版社, 1991: 107)
[24] NabarroF R N. Dislocations in a simple cubic lattice [J]. Proc. Phys. Soc., 1947, 59: 256
[25] PeierlsR. The size of a dislocation [J]. Proc. Phys. Soc., 1940, 52: 34
[26] TroitskiiO A. Pressure shaping by the application of a high energy [J]. Mater. Sci. Eng., 1985, 75: 37
[27] AnJ L, WangL, SongX, , et al. New approach for plastic deformation behavior of GH4169 superalloy with in-situ electric-pulse current at 800 ℃, Mater. Sci. Eng., 2017, A707: 356
[28] AnJ L, WangL, SongX, , et al. Improving mechanism of both strength and ductility of GH4169 alloy induced by electric-pulse treatment [J]. Mater. Sci. Eng., 2018, A724: 439
[1] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[2] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[3] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[4] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[5] 吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
[6] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[7] 熊健,魏德安,陆宋江,阚前华,康国政,张旭. 位错密度梯度结构Cu单晶微柱压缩的三维离散位错动力学模拟[J]. 金属学报, 2019, 55(11): 1477-1486.
[8] 王晓军, 向烨阳, 胡小石, 吴昆. 碳纳米材料增强镁基复合材料研究进展[J]. 金属学报, 2019, 55(1): 73-86.
[9] 郭祥如, 孙朝阳, 王春晖, 钱凌云, 刘凤仙. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究[J]. 金属学报, 2018, 54(9): 1322-1332.
[10] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[11] 吕昭平, 雷智锋, 黄海龙, 刘少飞, 张凡, 段大波, 曹培培, 吴渊, 刘雄军, 王辉. 高熵合金的变形行为及强韧化[J]. 金属学报, 2018, 54(11): 1553-1566.
[12] 孙军, 李苏植, 丁向东, 李巨. 氢化空位的基本性质及其对金属力学行为的影响[J]. 金属学报, 2018, 54(11): 1683-1692.
[13] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.
[14] 张金睿, 张晏玮, 郝玉琳, 李述军, 杨锐. 生物医用Ti-24Nb-4Zr-8Sn单晶合金塑性变形行为研究[J]. 金属学报, 2017, 53(10): 1385-1392.
[15] 王建国,刘东,杨艳慧. GH4169合金非均匀组织在加热过程中的演化机理*[J]. 金属学报, 2016, 52(6): 707-716.