Please wait a minute...
金属学报  2015, Vol. 51 Issue (12): 1449-1456    DOI: 10.11900/0412.1961.2015.00154
  本期目录 | 过刊浏览 |
7B04铝合金薄板的搅拌摩擦焊接及接头低温超塑性研究*
杨超1,2,王继杰2,马宗义1,倪丁瑞1(),付明杰3,李晓华3,曾元松3
1 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
2 沈阳航空航天大学材料科学与工程学院, 沈阳 110036
3 北京航空制造工程研究所金属成形技术研究室, 北京 100024
FRICTION STIR WELDING AND LOW-TEMPERATURE SUPERPLASTICITY OF 7B04 Al SHEET
Chao YANG1,2,Jijie WANG2,Zongyi MA1,Dingrui NI1(),Mingjie FU3,Xiaohua LI3,Yuansong ZENG3
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 College of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110036
3 Metal Forming Technology Department, Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024
引用本文:

杨超,王继杰,马宗义,倪丁瑞,付明杰,李晓华,曾元松. 7B04铝合金薄板的搅拌摩擦焊接及接头低温超塑性研究*[J]. 金属学报, 2015, 51(12): 1449-1456.
Chao YANG, Jijie WANG, Zongyi MA, Dingrui NI, Mingjie FU, Xiaohua LI, Yuansong ZENG. FRICTION STIR WELDING AND LOW-TEMPERATURE SUPERPLASTICITY OF 7B04 Al SHEET[J]. Acta Metall Sin, 2015, 51(12): 1449-1456.

全文: PDF(980 KB)   HTML
摘要: 

在转速1600 r/min, 焊速200 mm/min; 转速800 r/min, 焊速200 mm/min; 转速400 r/min, 焊速400 mm/min 3组参数下对2 mm厚的退火态7B04铝合金薄板进行搅拌摩擦焊接, 研究了焊接参数对焊缝质量及微观组织的影响, 并分析了焊核区的低温超塑性变形行为. 结果表明, 通过控制焊接参数, 可获得良好的焊接质量, 接头强度系数达100%. 焊核区发生动态再结晶, 生成细小等轴晶, 母材晶粒尺寸约为300 μm, 转速为1600, 800和 400 r/min时晶粒尺寸分别为2, 1和0.6 μm. 这种细晶组织有利于焊核区超塑变形, 在300 ℃, 焊核区在1×10-3和3×10-4 s-1应变速率下获得了160%~590%的延伸率, 在350 ℃, 1×10-3 s-1条件下获得高达790%的最大延伸率, 在约400 ℃时超塑性变形行为消失.

关键词 超高强铝合金搅拌摩擦焊接超塑性微观组织    
Abstract

Annealed 7B04 Al sheets in thickness of 2 mm were subjected to friction stir welding (FSW) under three rotation rate and welding speed parameters of 1600 r/min, 200 mm/min; 800 r/min, 200 mm/min and 400 r/min, 400 mm/min, respectively. The effect of welding parameters on the tensile property and microstructure of the FSW joints were investigated, with more efforts focusing on the low-temperature superplasticity of the nugget zones (NZs). The results showed that FSW joints with high quality could be produced by controlling welding parameters, with a joint strength coefficient of 100% being obtained. Dynamic recrystallization took place in the NZs with fine and equiaxed grains generated. The grain size of the base material was about 300 μm, while it was significantly decreased in the NZs with decreasing the rotation rate: about 2, 1 and 0.6 μm for the above three samples, respectively. The fine grain structure of the NZs could facilitate their superplastic deformation. The NZs exhibited superplastic elongations ranged from 160% to 590% at 300 ℃ at strain rates of 1×10-3 and 3×10-4 s-1. The maximum superplasticity of 790% was obtained at 350 ℃ at the strain rate of 1×10-3 s-1. The ability to superplastic deformation disappeared in the NZs at 400 ℃.

Key wordsultra-high strength aluminium alloy    friction stir welding    superplasticity    microstructure
    
基金资助:* 国家自然科学基金资助项目51331008
图1  搅拌摩擦焊(FSW)接头室温拉伸样品和焊核区超塑性拉伸样品尺寸
Direction Tensile strength / MPa Yield strength / MPa Elongation / %
Lengthways 210.0 90.0 16.5
Crosswise 211.0 98.0 16.3
表1  7B04铝合金母材(BM)的室温拉伸性能
Specimen Ratation rate rmin-1 Welding speed mmmin-1 Tensile strength MPa Yield strength MPa Elongation %
400-400 400 400 213.5 76.0 14.5
800-200 800 200 216.5 98.5 14.7
1600-200 1600 200 212.5 78.5 16.5
表2  7B04铝合金薄板FSW接头的室温拉伸性能
图2  不同参数下7B04铝合金薄板FSW焊缝和宏观显微组织的OM像
图3  7B04铝合金BM显微组织的OM像
图4  7B04铝合金BM和FSW焊核区显微组织的TEM像
图5  7B04铝合金BM与样品400-400 FSW焊核区的XRD谱
图6  FSW 7B04铝合金的超塑性拉伸性能
图7  7B04铝合金FSW焊核区样品超塑性拉伸断后形貌
图8  样品400-400超塑性拉伸断口附近的SEM像
[1] Thomas W M, Nicholas E D, Needham J C, Murch M G, Temple-Smith P, Dawes C J. Great Britain Pat, 9125978.8, 1991
[2] Thomas W M, Nicholas E D, Needham J C, Murch M G, Temple-Smith P, Dawes C J. US Pat, 5460317, EPS 0616490, 1991
[3] Mishra R S, Mahoney M W. Mater Sci, 2001; 507: 357
[4] Luan G H, Guo D L, Zhang T C, Sun C B. Weld Technol, 2003; 32: 1
[4] (栾国红, 郭德伦, 张田仓, 孙成彬. 焊接技术, 2003; 32: 1)
[5] Mishra R S, Mahoney M W, McFadden S X, Mara N A, Mukherjee A K. Scr Mater, 2002; 42: 163
[6] Ma Z Y, Mishra R S, Mahoney M W. Acta Mater, 2002; 50: 4419
[7] Ma Z Y, Mishra R S, Mahoney M W, Grimes R. Mater Sci Eng, 2003; A351: 148
[8] Ma Z Y, Mishra R S. Acta Mater, 2003; 51: 3551
[9] Ma Z Y, Liu F C, Mishra R S. Acta Mater, 2010; 58: 4693
[10] Xue P, Xiao B L, Ma Z Y. Acta Mater, 2014; 50: 245
[10] (薛 鹏, 肖伯律, 马宗义. 金属学报, 2014; 50: 245)
[11] Flores O V, Kennedy C, Murr L E, Brown D, Pappu S, Nowak B M, McClure J C. Scr Mater, 1998; 38: 703
[12] Jata K V, Semiatin S L. Scr Mater, 1998; 38: 703
[13] Su J Q, Nelson T W, Mishra R S, Mahoney M. Acta Mater, 2003; 51: 713
[14] Salem H G. Scr Mater, 2003; 49: 1103
[15] Mishra R S, Mahoney M W, McFadden S X, Mara N A, Mukherjee A K. Scr Mater, 1999; 42: 163
[16] Liu F C, Ma Z Y. Scr Mater, 2008; 58: 667
[17] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; R50: 1
[18] Motohashi Y, Sakuma T, Goloborodko A, Ito T, Itoh G. Mater Wissenschaft Werkstofftechnik, 2008; 39: 4
[19] Jian H G, Jiang F, Xu Z Y, Guan D K. Hot Work Technol, 2006; 35(6): 66
[19] (蹇海根, 姜 锋, 徐忠艳, 官迪凯. 热加工工艺, 2006; 35(6): 66)
[20] Liu X T, Cui J Z. Mater Rev, 2005; 19(3): 47
[20] (刘晓涛, 崔建忠. 材料导报, 2005; 19(3): 47)
[21] Wang M, Zhang H J, Zhang J B, Zhang X, Yang L. Mater Eng Perform, 2014; 23: 1881
[22] Wang Y H, Chen Y H, Huang C P, Ke L M. Hot Work Technol, 2012; 41(15): 161
[22] (王运会, 陈玉华, 黄春平, 柯黎明. 热加工工艺, 2012; 41(15): 161)
[23] Charit I, Mishra R S. Acta Mater, 2005; 53: 4211
[24] Ren S R, Ma Z Y, Chen L Q, Zhang Y Z. Acta Metall Sin, 2007; 43: 225
[24] (任淑荣, 马宗义, 陈礼清, 张玉政. 金属学报, 2007; 43: 225)
[25] Liu F C, Ma Z Y. Acta Metall Sin, 2008; 44: 319
[25] (刘峰超, 马宗义. 金属学报, 2008; 44: 319)
[26] Pu H P, Liu F C, Huang J C. Metall Mater Trans, 1995; 26: 1153
[27] Ma Z Y, Mishra R S. Friction Stir Superplasticity for Unitized Structures. Chapter 4, Netherlands: Elsevier, 2014: 19
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[4] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[5] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[6] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[7] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[8] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[9] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[10] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[11] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[12] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[13] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[14] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[15] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.