Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (9): 1055-1062    DOI: 10.11900/0412.1961.2013.00775
Current Issue | Archive | Adv Search |
EFFECT OF MICROSTRUCTURE EVOLUTION ON MECHANICAL PROPERTIES OF ULTRA-HIGH STRENGTH WEAR RESISTANCE STEEL
JU Biao, WU Huibin(), TANG Di, PAN Xuefu
National Engineering Research Center for Advanced Rolling Technology, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

JU Biao, WU Huibin, TANG Di, PAN Xuefu. EFFECT OF MICROSTRUCTURE EVOLUTION ON MECHANICAL PROPERTIES OF ULTRA-HIGH STRENGTH WEAR RESISTANCE STEEL. Acta Metall Sin, 2014, 50(9): 1055-1062.

Download:  HTML  PDF(5612KB) 
Export:  BibTeX | EndNote (RIS)      
Key words:  martensite      retained austenite      mechanical property      TMCP     
Received:  27 November 2013     
ZTFLH:  TG142  
Fund: Supported by High Technology Research and Development Program of China (No.2012AA03A508)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2013.00775     OR     https://www.ams.org.cn/EN/Y2014/V50/I9/1055

Fig.1  Schematic of thermo-mechanical control process (TMCP) procedure for tested steel (Ms—martensite transformation start temperature, Mf—martensite transformation finish temperature)
Fig.2  Tensile test results of the samples at different states (TMCP—thermo-mechanical control processed, WQ—water quenched after reheated austenization)
Fig.3  Brinell hardness and impact energy of the steels at different states
Fig.4  SEM images of steels at different states
Fig.5  SEM (a), TEM (b) images and EDS spectrum (c) of the carbide precipitation
Fig.6  TEM images of lath martensite microstructures and localized twinning substructure in the tested steels
Fig.7  Morphologies of prior austenite grain boundaries after soaked for 2 h at 1200 ℃ and then quenched (a), TMCP (b) and WQ (c)
Fig.8  XRD spectra (a) and the calculated retained austenite volume fraction (b) of the tested steels at different states (The lower limit of the used diffractometer is 3%)
[1] Song W X. Physical Metallurgy. 2nd Ed., Beijing: Metallurgical Industry Press, 1989: 335
(宋维锡.金属学. 第2版, 北京: 冶金工业出版社, 1989: 335)
[2] Krauss G. Mater Sci Eng, 1999; A273-275: 40
[3] Hutchinson B, Hagström J, Karlsson O, Lindell D, Tornberg M, Lindberg F, Thuvander M. Acta Mater, 2011; 59: 5845
[4] Chatterjee S, Bhadeshia H. Mater Sci Technol, 2006; 22: 645
[5] Lee C G, Kim S J, Lee T H, Lee S. Mater Sci Eng, 2004; A371: 16
[6] Wang Y, Zhang K, Guo Z H, Chen N L, Rong Y H. Acta Metall Sin, 2012; 48: 641
(王 颖, 张 柯, 郭正洪, 陈乃录, 戎咏华. 金属学报, 2012; 48: 641)
[7] Speer J G, Matlock D K,De Cooman B C, Schroth J G. Acta Mater, 2003; 51: 2611
[8] Edmonds D V, He K, Rizzo F C,De Cooman B C, Matlock D K, Speer J G. Mater Sci Eng, 2006; 438-440: 25
[9] Clarke A J, Speer J G, Miller M K, Hackenberg R E, Edmonds D V, Matlock D K, Rizzo F C, Clarke K D, De Moor E. Acta Mater, 2008; 56: 16
[10] Misra R D K, Nathani H, Hartmann J E, Siciliano F. Mater Sci Eng, 2005; A394: 339
[11] Wang Y M,Li M Y,Wei G. Control Rolling and Control Cooling of the Steel Plates. 2nd Ed., Beijing: Metallurgical Industry Press, 2010: 50
(王有铭,李曼云,韦 光. 钢材的控制轧制和控制冷却. 第2版, 北京: 冶金工业出版社, 2010: 50)
[12] Hutchinson C R, Zurob H S, Sinclair C W, Brechet Y J M. Scr Mater, 2008; 59: 635
[13] Hulka K, Kern A, Schriever U. Mater Sci Forum, 2005; 500-501: 519
[14] Hu R R, Cai Q W, Wu H B, Che Y J. J South China Univ Technol, 2013; 41: 1009
(胡日荣, 蔡庆伍, 武会宾, 车英健. 华南理工大学学报, 2013; 41: 1009)
[15] Xu Z Y. Mater Sci Forum, 2007; 561-565: 2283
[16] Rong Y H. Acta Metall Sin, 2011; 47: 1483
(戎咏华. 金属学报 2011; 47: 1483)
[17] Sahin Y, Erdogan M, Cerah M. Wear, 2008; 265: 196
[18] Xu X J, Xu W, Ederveen F H, Zwaag S. Wear, 2013; 301: 89
[19] Sarikaya M, Jhingan A K, Thomas G. Metall Trans, 1983; 14: 1121
[20] Lee W S, Su T T. J Mater Process Technol, 1999; 87: 198
[21] Park S G, Lee K H, Kim M C, Lee B S. Mater Sci Eng, 2013; A561: 277
[22] Zhong N, Wang X D, Wang L, Rong Y H. Mater Sci Eng, 2009; A506: 111
[23] Hashimoto S, Ikeda S, Sugimoto K I, Miyake S. ISIJ Int, 2004; 44: 1590
[24] Xu Z Y. Martensite Phase Transformation and Martensite. 2nd Ed.,Beijing: Science Press, 1999: 5
(徐祖耀. 马氏体相变与马氏体. 第2版, 北京: 科学出版社, 1999: 5)
[25] Chilton J M, Kelly P M. Acta Metall, 1968; 16: 637
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[14] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[15] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
No Suggested Reading articles found!