Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (6): 821-828    DOI: 10.11900/0412.1961.2021.00233
Research paper Current Issue | Archive | Adv Search |
Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel
WANG Zhoutou1,2, YUAN Qing1,2, ZHANG Qingxiao1,2, LIU Sheng1,2, XU Guang1,2()
1State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
Cite this article: 

WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel. Acta Metall Sin, 2023, 59(6): 821-828.

Download:  HTML  PDF(3229KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Martensite is an attractive crystalline structure to fabricate ultrafine grain steels by cold rolling and annealing because of its low equivalent strain. However, the deformation resistance of martensite increases inevitably with the increase in the carbon content of the steel. Accordingly, cracks are easily initiated in martensite before it reaches the desired strain, restricting the application of cold rolling and annealing to ultra-low and low-carbon steels. Thus, to extend the application of these methods from low to medium-carbon steel, compositional gradient steel was prepared by decarburizing medium-carbon steel. The carbon content increased from the surface layer to core layer in the gradient steel. The decarburized medium-carbon martensite was successfully cold rolled under large deformation with an equivalent strain of 1.5 with no microcracks on the sample surface. The microstructure and mechanical properties of the quenched and cold rolled gradient component steel were characterized and studied via OM, SEM, and tensile test. The experimental results revealed the gradient size of martensite along with the gradient carbon content in the microstructure. Further, different diffusion rates of carbon atoms during decarburization and austenitization resulted in the gradient austenite grain, which restrained the size of martensite. Compared with homogenous martensite of the experimental medium-carbon steel, the steel with gradient distribution of carbon exhibited low tensile strength, which decreased from 1700 MPa to 1525 MPa, but high tensile uniform elongation, which is increased by 40%; moreover, the gradient steel showed higher product of strength and elongation than homogeneous martensite steel with similar average carbon content without decarburization. The good combination of strength and plasticity in the compositionally gradient steel was attributed to the high strength and good plasticity provided by the core layer and decarburized layer, respectively. Additionally, the heterogeneity in the strain distribution led to an extra strain-hardening; thus, the surface layer restrains further propagation of micro-shear bands from the core layer.

Key words:  decarburization      martensite      gradient      medium-carbon steel      cold rolling     
Received:  02 June 2021     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(51874216);National Natural Science Foundation of China(52004193);Hebei Iron and Steel Group Key Research and Development Project(HG2019313);China Postdoctoral Science Fo-undation Project(2020M682496)
Corresponding Authors:  XU Guang, professor, Tel:15697180996, E-mail: xuguang@wust.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00233     OR     https://www.ams.org.cn/EN/Y2023/V59/I6/821

Fig.1  Rout 1 for decarburization procedures (a) and rout 2 for obtaining homogeneous martensite (b) (V—volume of CO or CO2)
Fig.2  Microstructure of the homogenous martensite
Fig.3  SEM images of the decarburized martensite in the surface layer (a) and core layer (b) (Insets show the enlarged microstructure)
Fig.4  Microstructure of the decarburized steel from surface layer to core layer
Fig.5  Hardness profile of decarburized martensite and homogeneous martensite
Fig.6  Morphologies of the cold rolled specimens of homogeneous martensite (sample 1) and compositionally gradient martensite (sample 2) (a) and enlarged view of homogeneous martensite in sample 1 (b)
Fig.7  SEM images of the cold rolled decarburized martensite in surface layer (a) and core layer (b) (ND—normal direction, RD—rolling direction, LDC—lamellar dislocation cell, IBL—irregularly bent lamella, KL—kinked lath)
Fig.8  Hardness and carbon content distributions along sample thickness
Fig.9  Engineering stress-strain curves of samples
Fig.10  Equivalent strains as a function of tensile strength of cold rolled martensite in different researches
Fig.11  Tensile fracture morphologies of the surface layer (a), the area from surface to core layer (b), and the transition area (c) of homogeneous martensite
Fig.12  Tensile fracture morphologies of the surface layer (a), the area from surface to core layer (b), and the transition area (c) of decarburized martensite
Fig.13  Tensile fracture morphologies of the surface layer (a), the whole area (b), and the transition area (c) of cold rolled decarburized martensite
1 Nuckowski P M, Snopiński P, Wróbel T. Influence of plastic strain accumulation in continuous ingots during ECAP on structure and recrystallization temperature of AlCu4MgSi alloy [J]. Materials, 2020, 13: 576
doi: 10.3390/ma13030576
2 Pei Y B, Gui Y W, Huang T, et al. Microstructure and corrosion behaviors of AZ63 magnesium alloy fabricated by accumulative roll bonding process [J]. Mater. Res. Express, 2020, 7: 066525
3 Krywopusk N M, Williams C L, Kecskes L J, et al. Characterization of spalled AZ31B processed by ECAE [J]. Mater. Sci. Eng., 2019, A767: 138298
4 Zhang L Y, Yang G, Huang C X, et al. High strength and high toughness heat-resistant martensitic steel produced by ECAP [J]. Acta Metall. Sin., 2008, 44: 409
张凌义, 杨 钢, 黄崇湘 等. ECAP制备高强高韧马氏体耐热钢 [J]. 金属学报, 2008, 44: 409
5 Mroz S, Wierzba A, Stefanik A, et al. Effect of asymmetric accumulative roll-bonding process on the microstructure and strength evolution of the AA1050/AZ31/AA1050 multilayered composite materials [J]. Materials, 2020, 13: 5401
doi: 10.3390/ma13235401
6 Al-Fadhalah K J, Alyazidi M K, Rafiq M. Effect of microstructure refinement on hardness homogeneity of aluminum alloy 1100 processed by accumulative roll bonding [J]. J. Mater. Eng. Perform., 2019, 28: 4693
doi: 10.1007/s11665-019-04228-3
7 Loucif A, Figueiredo R B, Baudin T, et al. Ultrafine grains and the Hall-Petch relationship in an Al-Mg-Si alloy processed by high-pressure torsion [J]. Mater. Sci. Eng., 2012, A532: 139
8 Fujita I, Edalati K, Sauvage X, et al. Grain growth in nanograined aluminum oxide by high-pressure torsion: Phase transformation and plastic strain effects [J]. Scr. Mater., 2018, 152: 11
doi: 10.1016/j.scriptamat.2018.04.003
9 Roy A, Tiwari M, Sahu S, et al. Microstructure, texture and mechanical properties of Al-Mg-Si Alloy processed by multiaxial compression [J]. J. Mater. Eng. Perform., 2020, 29: 3876
doi: 10.1007/s11665-020-04917-4
10 Ramesh S, Anne G, Nayaka H S, et al. Effects of combined multiaxial forging and rolling process on microstructure, mechanical properties and corrosion behavior of a Cu-Ti alloys [J]. Mater. Res. Express, 2019, 6: 056559
11 Feng G, Shi L J, Lv J, et al. Investigation of surface nanocrystallization of a low carbon steel induced by ultrasonic shot peening [J]. Acta Metall. Sin., 2000, 36: 300
冯 淦, 石连捷, 吕 坚 等. 低碳钢超声喷丸表面纳米化的研究 [J]. 金属学报, 2000, 36: 300
12 Mansoor P, Dasharath S M. Microstructural and mechanical properties of magnesium alloy processed by severe plastic deformation (SPD)—A review [J]. Mater. Today Proc., 2020, 20: 145
13 Huang J Y, Zhu Y T, Jiang H, et al. Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening [J]. Acta Mater., 2001, 49: 1497
doi: 10.1016/S1359-6454(01)00069-6
14 Song R, Ponge D, Raabe D. Mechanical properties of an ultrafine grained C-Mn steel processed by warm deformation and annealing [J]. Acta Mater., 2005, 53: 4881
doi: 10.1016/j.actamat.2005.07.009
15 Lin P C, Pang Y H, Sun Q, et al. 3D-SPD rolling method of 45 steel ultrafine grained bar with bulk size [J]. Acta Metall. Sin., 2021, 57: 605
doi: 10.11900/0412.1961.2020.00247
林鹏程, 庞玉华, 孙 琦 等. 45钢块体超细晶棒材3D-SPD轧制法 [J]. 金属学报, 2021, 57: 605
doi: 10.11900/0412.1961.2020.00247
16 Ueji R, Tsuji N, Minamino Y, et al. Ultragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite [J]. Acta Mater., 2002, 50: 4177
doi: 10.1016/S1359-6454(02)00260-4
17 Lan H F, Liu W J, Liu X H. Ultrafine ferrite grains produced by tempering cold-rolled martensite in low carbon and microalloyed steels [J]. ISIJ Int., 2007, 47: 1652
doi: 10.2355/isijinternational.47.1652
18 Yuan Q, Xu G, Liu S, et al. Effect of rolling reduction on microstructure and property of ultrafine grained low-carbon steel processed by cryorolling martensite [J]. Metals, 2018, 8: 518
doi: 10.3390/met8070518
19 Ashrafi H, Najafizadeh A. Fabrication of the ultrafine grained low carbon steel by cold compression and annealing of martensite [J]. Trans. Indian Inst. Met., 2016, 69: 1467
doi: 10.1007/s12666-015-0714-6
20 Huang X, Morito S, Hansen N, et al. Ultrafine structure and high strength in cold-rolled martensite [J]. Metall. Mater. Trans., 2012, 43A: 3517
21 Morito S, Ohba T, Maki T. Comparison of deformation structure of lath martensite in low carbon and ultra-low carbon steels [J]. Mater. Sci. Forum., 2007, 558-559: 933
doi: 10.4028/www.scientific.net/MSF.558-559
22 Krauss G. Martensite in steel: Strength and structure [J]. Mater. Sci. Eng., 1999, A273-275: 40
23 Lee J C, Kang U G, Oh C S, et al. Effects of deformation strains and annealing temperatures on mechanical properties of martensitic steels [J]. Mater. Sci. Forum., 2010, 654-656: 218
doi: 10.4028/www.scientific.net/MSF.654-656
24 Wu X L, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure [J]. Mater. Res. Lett., 2014, 2: 185
doi: 10.1080/21663831.2014.935821
25 Ueji R, Tsuji N, Minamino Y, et al. Effect of rolling reduction on ultrafine grained structure and mechanical properties of low-carbon steel thermomechanically processed from martensite starting structure [J]. Sci. Technol. Adv. Mater., 2004, 5: 153
doi: 10.1016/j.stam.2003.10.017
26 Zhao X, Jing T F, Gao Y W, et al. Annealing behavior of nano-layered steel produced by heavy cold-rolling of lath martensite [J]. Mater. Sci. Eng., 2005, A397: 117
[1] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[2] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[3] YU Shaoxia, WANG Qi, DENG Xiangtao, WANG Zhaodong. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. 金属学报, 2023, 59(10): 1365-1375.
[4] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[5] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[6] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[7] REN Ping, CHEN Xingpin, WANG Cunyu, YU Feng, CAO Wenquan. Effects of Pre-Strain and Two-Step Aging on Microstructure and Mechanical Properties of Fe-30Mn-11Al-1.2C Austenitic Low-Density Steel[J]. 金属学报, 2022, 58(6): 771-780.
[8] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[9] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[10] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[11] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[12] WANG Yu, HU Bin, LIU Xingyi, ZHANG Hao, ZHANG Haoyun, GUAN Zhiqiang, LUO Haiwen. Influence of Annealing Temperature on Both Mechanical and Damping Properties of Nb-Alloyed High Mn Steel[J]. 金属学报, 2021, 57(12): 1588-1594.
[13] SHENG Ying, JIA Bin, WANG Ruheng, CHEN Guoping. The Definition of Atomic Scale Strain and Its Application in Identifying the Evolution of Microdefects[J]. 金属学报, 2020, 56(8): 1144-1154.
[14] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[15] WANG Shihong,LI Jian,GE Xin,CHAI Feng,LUO Xiaobing,YANG Caifu,SU Hang. Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite[J]. 金属学报, 2020, 56(3): 311-320.
No Suggested Reading articles found!