Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (9): 1046-1054    DOI: 10.11900/0412.1961.2013.00843
Current Issue | Archive | Adv Search |
MICROSTRUCTURES AND LOW-CYCLE FATIGUE BEHAVIOR OF Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) ALLOY
CHE Xin1, LIANG Xingkui2, CHEN Lili3, CHEN Lijia1(), LI Feng1
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870
2 New Northeast Electric (Shenyang) High Voltage Switchgear Co. Ltd, Shenyang 110025
3 Shenyang Aerosun-Futai Expansion Joint Co. Ltd, Shenyang 110141
Cite this article: 

CHE Xin, LIANG Xingkui, CHEN Lili, CHEN Lijia, LI Feng. MICROSTRUCTURES AND LOW-CYCLE FATIGUE BEHAVIOR OF Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) ALLOY. Acta Metall Sin, 2014, 50(9): 1046-1054.

Download:  HTML  PDF(4169KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Al-Si-Cu-Mg cast aluminum alloys have high mechanical properties and good cast performance. Due to their excellent comprehensive properties, the Al-Si-Cu-Mg cast aluminum alloys have wide application, and have become one of the most important structural materials applied in the equipment manufacturing industry. Actually, many key components in practical engineering application are often subjected to the alternating load, and thus the fatigue failure has become an important factor which concerns the safety and economy for those structures used in various engineering fields. Although some researches for the fatigue behavior of aluminum alloys have been performed, mainly focus on the regularity understanding. Especially, the influences of rare earth elements and heat-treat condition on the low-cycle fatigue behavior of aluminum alloys have not been comprehensively revealed. Obviously, the investigation concerning the microstructure and fatigue property of the Al-Si-Cu-Mg cast aluminum alloys can not only provide the theoretical basis for the development of new type cast aluminum alloys but also the reliable theoretical foundation for the safety design and reasonable use of these alloys. In order to determine the influence of rare earth element Sc on the low-cycle fatigue behavior of casting Al-9.0%Si-4.0%Cu-0.4%Mg alloy with T6 treated state, the cyclic stress response behavior, fatigue life behavior and cyclic deformation mechanism of the Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) cast aluminum alloys with T6 treated states under low-cycle fatigue loading condition were investigated. The results show that at the low total strain amplitude, the Al-9.0%Si-4.0%Cu-0.4%Mg alloy exhibits the cyclic strain hardening during whole fatigue deformation, while the Al-9.0%Si-4.0%Cu-0.4%Mg-0.3%Sc alloys exhibit the cyclic strain hardening in the initial stage of fatigue deformation and then the stable cyclic stress response in the later stage of fatigue deformation. At the higher total strain amplitudes, the Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) alloys exhibit the cyclic strain hardening. The addition of Sc can effectively enhance the cyclic deformation resistance and prolong the fatigue lives of the Al-9.0%Si-4.0%Cu-0.4%Mg alloy with T6 treated state. At the lower total strain amplitudes, the cyclic deformation mechanism of the Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) alloys with T6 treated state is the plane slip, while at the higher total strain amplitudes, the cyclic deformation mechanism becomes the wavy slip.

Key words:  Al-Si-Cu-Mg alloy      Sc      T6 treatment      low-cycle fatigue      fatigue life      cyclic stress response      cyclic deformation mechanism     
ZTFLH:  TG146.2  
Fund: Supported by Science and Technology Research of Education Department of Liaoning Province (No.L2013056)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2013.00843     OR     https://www.ams.org.cn/EN/Y2014/V50/I9/1046

Fig.1  Microstructures of Al-9.0%Si-4.0%Cu-0.4%Mg (a) and Al-9.0% Si-4.0%Cu-0.4%Mg-0.3%Sc (b) alloys subjected to T6 treatment
Fig.2  TEM images of Al3Sc phase in Al-9.0%Si-4.0%Cu-0.4%Mg-0.3%Sc alloy before (a) and after (b) solution treatment (Inset in Fig.2a show SAEDP of Al3Sc)
Fig.3  TEM images of q' (Al2Cu) phase in Al-9.0%Si-4.0%Cu-0.4%Mg (a) and Al-9.0%Si-4.0%Cu-0.4%Mg-0.3%Sc (b) alloys subjected to T6 treatment (Inset in Fig.3a shows SAEDP of Al2Cu )
Fig.4  Comparisons of cyclic stress response curves for Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) alloys subjected to T6 treatment under the total strain amplitudes Det/2=0.25% (a), 0.30% (b), 0.35% (c), 0.40% (d) and 0.45% (e)
Fig.5  Total strain amplitude versus fatigue life curves for Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) alloys subjected to T6 treatment
Fig.6  Cyclic stress-strain curves of Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) alloys subjected to T6 treatment
Fig.7  Strain amplitudes versus reversals to failure curves of Al-9.0%Si-4.0%Cu-0.4%Mg (a) and Al-9.0%Si-4.0%Cu-0.4%Mg-0.3%Sc (b) alloys subjected to T6 treatment
Fig.8  Dislocation configurations in Al-9.0%Si-4.0%Cu-0.4%Mg alloy after fatigue failure deformation for 14000 cyc under Det/2=0.25% (a), 78 cyc at Det/2=0.45% (b) and Al-9.0%Si-4.0%Cu-0.4%Mg-0.3%Sc alloy 15876 cyc under Det/2=0.25% (c), 127 cyc under Det/2=0.45% (d) subjected to T6 treatment (Arrows in Figs.8a and c indicate the direction of slip bands)
Alloy? sf' / MPa b ef' / % c K' / MPa n' ?Remark
Al-Si-Cu-Mg 394.74 -0.0822 2.8 -0.6594 333.93 0.0333 Det/2≥0.35%
1908.7 -1.5412 Det/2≤0.35%
Al-Si-Cu-Mg-Sc 365.14 -0.0671 8.7 -0.4892 438.58 0.0416 Det/2≥0.35%
699519 -2.1887 Det/2≤0.35%
Table 1  Strain fatigue parameters of Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) alloys subjected to T6 treatment
Fig.9  Dislocation configurations in Al-9.0%Si-4.0%Cu-0.4%Mg-0.3%Sc alloy after fatigue deformation for 10 cyc (a), 400 cyc (b) and 1000 cyc (c) at Det/2=0.25% and 3 cyc at Det/2=0.45% (d) subjected to T6 treatment (Arrows in Figs.8b and c indicate the direction of slip bands)
[1] Wang X, Chen G Q, Li B, Wu L M, Jiang D M. Rare Met, 2010; 29(1): 66
[2] Mo D F, He G Q, Hu Z F, Zhang W H. J Mater Eng, 2010; (7): 92
(莫德峰, 何国球, 胡正飞, 张卫华. 材料工程, 2010; (7): 92)
[3] Wang G Q, Bian X F, Wang W M, Zhang J Y. Mater Lett, 2003; 57: 4083
[4] Moizumi K, Mine K, Tezuka H, Sato T. Mater Sci Forum, 2002; 396-402: 1371
[5] Caceres C H, Griffiths J R, Reiner P. Acta Mater, 1996; 44: 15
[6] Wang Q G, Caceres C H, Griffiths J R. Metall Mater Trans, 2003;34A: 2901
[7] Cheng Z Z, Xie C H, Zhu C X. Light Met, 2010; (7): 58
(陈振中, 解传浩, 朱成香. 轻金属, 2010; (7): 58 )
[8] Bray G H, Glazov M, Rioja R J, Li D, Gangloff R P. Int J Fatigue, 2001; 23: 265
[9] Manson S S. Exp Mech, 1965; 5: 193
[10] Nieslony A, Dsoki C E, Kaufmann H, Krug. Int J Fatigue, 2008; 30: 1967
[11] Miura Y, Joh C H, Katsube T. Mater Sci Forum, 2000; 331-337: 1031
[12] Zhou K, Li Y Q. Chin J Nonferrous Met, 1997; 7: 97
(周 昆, 李云卿. 中国有色金属学报, 1997; 7: 97)
[13] Kendig K L, Miracle D B. Acta Mater, 2002; 50: 4165
[14] Li F, Wang Y, Chen L J, Zheng L, Zhou J Y. J Mater Sci, 2005; 40: 1529
[15] Kendig K L, Miracle D B. Acta Mater, 2004; 50: 4165
[16] Sjölander E, Seifeddine S. J Mater Process Technol, 2010; 210: 1249
[17] Kim M, Hong Y, Cho H. Met Mater Int, 2004; 10: 513
[18] Zhou M Z. PhD Dissertation, Central South University, Changsha, 2010
(周明哲. 中南大学博士学位论文, 长沙, 2010)
[19] Dvydov V G, Rostova T D, Zakharov V V, Filatov Y A, Yelagin V I. Mater Sci Eng, 2000; A280: 30
[20] Watanabe C, Jin C Y, Monzen R, Kitagawa K. Mater Sci Eng, 2004; A387-389: 552
[21] Lados D A, Apelian D. Mater Sci Eng, 2004; A385: 200
[22] Lee F T, Major J F, amuel F H. Metall Mater Trans, 1995; 26A: 1553
[23] Li M J, Hu H Y, Xing X S. Acta Phys Sin, 2003; 52: 2092
(李眉娟, 胡海云, 邢修三. 物理学报, 2003; 52: 2092 )
[24] Yin Z M, Pan Q L, Zhang Y H, Jiang F. Mater Sci Eng, 2000; A280: 151
[25] Saisrinadh K V, Singh V. Metall Mater Trans, 2007; 38A: 1868
[26] Chen L J, Wu W, Liaw P K. Acta Metall Sin, 2006; 42: 952
(陈立佳, 吴 崴, Liaw P K. 金属学报, 2006; 42: 952)
[27] Singh V, Sundararaman M, Chen W, Wahi R P. Metall Trans, 1991; 22A: 499
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[5] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[6] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[7] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[8] MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. 金属学报, 2023, 59(4): 457-466.
[9] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[10] GAO Han, LIU Li, ZHOU Xiaoyu, ZHOU Xinyi, CAI Wenjun, ZHOU Hongling. Preparation and Bioactivity of Micro-Nano Structure on Ti6Al4V Surface[J]. 金属学报, 2023, 59(11): 1466-1474.
[11] DUAN Huichao, WANG Chunyang, YE Hengqiang, DU Kui. Electron Tomography Analysis on the Structure and Chemical Composition of Nanoporous Metal Surfaces[J]. 金属学报, 2023, 59(10): 1291-1298.
[12] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
[13] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[14] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[15] LIU Zhiyuan, WANG Yonggui, ZHAO Chengyu, YANG Ting, XIA Ailin. Nano-Mesoscopic Scale Microstructure Regulation for p-Type Skutterudite Thermoelectric Materials[J]. 金属学报, 2022, 58(8): 979-991.
No Suggested Reading articles found!