Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (7): 782-788    DOI: 10.3724/SP.J.1037.2011.00659
论文 Current Issue | Archive | Adv Search |
INFLUENCE OF COLUMNAR GRAINS ON THE COLD ROLLING TEXTURE EVOLUTION IN Fe-3%Si\ ELECTRICAL STEEL
ZHANG Ning, YANG Ping, MAO Weimin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

ZHANG Ning YANG Ping MAO Weimin. INFLUENCE OF COLUMNAR GRAINS ON THE COLD ROLLING TEXTURE EVOLUTION IN Fe-3%Si\ ELECTRICAL STEEL. Acta Metall Sin, 2012, 48(7): 782-788.

Download:  PDF(6037KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Columnar grains exist in nearly all cast slabs of Fe-3%Si electrical steels, their morphological and crystallographic anisotropies strongly influence the microstructure and texture evolution during following hot rolling, cold rolling and final annealing. This work investigates the rolling texture and microstructure of the specimens with columnar grains initially arranged along different directions by means of XRD and EBSD techniques, and the effects of columnar grain boundaries are analyzed. The results show that at intermediate rolling reduction, all three types of specimens show to different extents the inheritance of {001} texture, or in other words, they prevent effectively the formation of {111} texture. The {001} texture is strongly retained in ND specimen (with initial columnar grains' longitudinal axis being along normal direction) and TD specimen (with initial columnar grains' longitudinal axis being along transverse direction), whereas {111}<112> texture is the strongest in RD specimen(with initial columnar grains' longitudinal axis being along rolling direction). In addition, rotated cube and {111}<110> textures develop in TD specimen. All three types of specimens demonstrate an orientation rotation path from cube {001}<100> over 20o rotated cube {001}<130> to {113}<251>, which is in contrast to the conventional rotation path from α fiber to $\gamma$ fiber in equiaxed polycrystalline electrical steels. In spite of the significant difference in grain boundary arrangement in the three types of specimens, their influence on texture formation is limited because of the large grain sizes and the influence is mainly related with initial orientations. To understand rolling texture evolution of columnar grain specimens is of great significance in the development of new type electrical steels with strong {001} texture.
Key words:  electrical steel      columnar grain      texture      cold rolling     
Received:  24 October 2011     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00659     OR     https://www.ams.org.cn/EN/Y2012/V48/I7/782

[1] Kovac F, Stoyka V, Petryshynets I. J Magn Magn Mater, 2008; 320: 627

[2] Takashima M, Komatsubara M, Morito N. ISIJ Int, 1997; 37: 1263

[3] Gobernado P, Petrov R, Ruiz D, Leunis E, Kestens L A I. Mater Sci Forum, 2010; 638–642: 2829

[4] Tomida T, Tanaka T. ISIJ Int, 1995; 35: 548

[5] Kovac F, Dzubinsky M, Sidor Y. J Magn Magn Mater, 2004; 269: 333

[6] Gutierrez–Castaneda E J, Salinas–Rodriguez A. J Magn Magn Mater, 2011; 323: 2524

[7] Yoshinaga N, Kestens L, De Cooman B C. Mater Sci Forum, 2005; 495–497: 1267

[8] Gautam J P, Petrov R, Kestens L. Mater Sci Forum, 2007; 550: 503

[9] Kestens L. Jonas J J, Van Houtte P, Aernoudt E. Metall Mater Trans, 1996; 27A: 2347

[10] Abe H, Matsuo M, Ito K. Trans JIM, 1962; 26: 684

[11] Walter J L, Koch E F. Acta Metall, 1962; 10: 1059

[12] Dorner D, Zaefferer S, Lahn L, Raabe D. J Magn Magn Mater, 2006; 304: 183

[13] Koh P K, Dunn C G. J Met, 1955; 7: 401

[14] Dunn C G. Acta Metall, 1954; 2: 173

[15] Walter J L, Hibbard W L. Trans AIME, 1958; 212: 731

[16] Inagaki H, Suda T. Texture, 1972; 1: 129

[17] B¨ottcher A, L¨ucke K. Acta Metall Mater, 1993; 41: 2503

[18] Mishra S, Darmann C, L¨ucke K. Acta Metall, 1984; 32: 2185

[19] Shimizu Y, Ito Y, Iida Y. Metall Trans, 1986; 17A: 1323

[20] Xie J X, Fu H D, Zhang Z H, Jiang Y B. Mater Sci Eng, 2012; A538: 315

[21] Zhang N, Yang P, Mao W M. Acta Metall Sin, 2012; 48: 307

(张宁, 杨平, 毛卫民. 金属学报, 2012; 48:307)

[22] Liu H T, Liu Z Y, Qiu Y Q, Cao G M, Li C G, Wang G D. Mater Charact, 2009; 60: 79

[23] Tsuji N, Tsuzaki K, Maki T. ISIJ Int, 1992; 32: 1319

[24] Quadir M Z, Duggan B J. Acta Mater, 2004; 52: 4011

[25] Hutchinson B. Trans R Soc Lond, 1999; 357A: 1471

[26] Van Houtte P, Li S, Seefeldt M, Delannay L. Int J Plast, 2005; 21: 589

[27] Stojakovic D, Doherty R D, Kalidindi S R, Landgraf F J G. Metall Mater Trans, 2008; 39A: 1738
[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[3] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[4] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[5] YU Shaoxia, WANG Qi, DENG Xiangtao, WANG Zhaodong. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. 金属学报, 2023, 59(10): 1365-1375.
[6] REN Ping, CHEN Xingpin, WANG Cunyu, YU Feng, CAO Wenquan. Effects of Pre-Strain and Two-Step Aging on Microstructure and Mechanical Properties of Fe-30Mn-11Al-1.2C Austenitic Low-Density Steel[J]. 金属学报, 2022, 58(6): 771-780.
[7] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[8] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[9] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[10] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[11] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[12] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[13] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[14] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[15] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
No Suggested Reading articles found!