Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (3): 291-300    DOI: 10.11900/0412.1961.2019.00314
Current Issue | Archive | Adv Search |
Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel
YU Lei,LUO Haiwen()
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(20406KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the rapid development of high-speed motors, traditional non-oriented silicon steel is difficult to meet its strength requirements. High strength enables resistance to deformation and fatigue fracture induced by centrifugal force. In this work, Nb element is added to traditional non-oriented silicon steel to improve its strength without greatly sacrificing good magnetism. The previous research on Nb-containing high strength non-oriented silicon steel showed that the annealing at high temperature led to good magnetic properties but poor mechanical properties. In order to improve the strength of the steel, the annealing temperature was decreased to make part of the dislocation structure retained in the cold rolled material. The influences of annealing below 900 ℃ on the microstructures, texture, magnetic and mechanical properties of cold rolled Nb-alloyed non-oriented electrical steel were investigated in this work. The increase of annealing temperature promoted recovery at 700~750 ℃ and led to a partial recrystallization with higher fraction at 800~850 ℃; meanwhile, α texture component was enhanced but γ texture suppressed with the increasing temperature. In contrast, the annealing at 900 ℃ resulted in a complete recrystallization, stronger γ but weaker α texture component. Higher annealing temperature produced lower strength and higher ductility as expected, due to dislocations annihilated by recovery and recrystallization, which also led to lower high-frequency iron loss. The value of magnetic induction B50 corresponds well with the intensity of α texture in the annealed steel, and reaches the maximum value at 850 ℃ due to the most intense α texture formed, at which the best combination of mechanical and magnetic properties is also achieved, including the value of magnetic flux B50 (1.572 T), high-frequency iron loss P1.0/400 (33.26 W/kg) and yield strength about 600 MPa, the latter is attributed to the multiple strengthening mechanisms including dislocation, precipitation and grain refinement strengthening.

Key words:  high strength non-oriented silicon steel      recrystallization      texture      magnetic property      mechanical property     
Received:  25 September 2019     
ZTFLH:  TG142.1  
Corresponding Authors:  Haiwen LUO     E-mail:  luohaiwen@ustb.edu.cn

Cite this article: 

YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel. Acta Metall Sin, 2020, 56(3): 291-300.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00314     OR     https://www.ams.org.cn/EN/Y2020/V56/I3/291

Fig.1  OM images on the microstructures of Nb-containing non-oriented silicon steel after annealing at different temperatures for 240 s (ND—normal direction, RD—rolling direction)(a) 700 ℃ (b) 750 ℃ (c) 800 ℃ (d) 850 ℃ (e) 900 ℃
Fig.2  EBSD image quality mapping with boundaries (a~c) and orientation mapping (d~f) on the Nb-containing non-oriented silicon steel after annealing at 750 ℃ (a, d), 800 ℃ (b, e) and 900 ℃ (c, f) (The red and green lines represent low and high angle boundaries with the misorientations between 2° and 15°, and more than 15°, respectively)Color online
Fig.3  Evolution of Nb-rich particles in Nb-containing non-oriented silicon steel after cold-rolling and annealing at different temperatures for 240 s(a) cold-rolled state (b) 700 ℃ (c) 750 ℃ (d) 800 ℃ (e) 850 ℃(f~h) 900 ℃ (g) TEM bright field image (h) SAED pattern
T / ℃X / nmf / %σPS / MPa
70026.550.64129
75033.850.4287
80034.410.2262
85054.870.1637
90036.850.1345
Table 1  Measured sizes, volume fractions and the increments of precipitation strengthening of Nb-rich particles in Nb-containing non-oriented silicon steel after different annealing temperatures
Fig.4  SEM images (a, b) and EPMA maps of Nb distributions (c, d) of Nb-containing non-oriented silicon steel after annealing at 700 ℃ (a, c) and 900 ℃ (b, d)Color online
Fig.5  Orientation distribution function (ODF) section images at φ2=45° on textures in Nb-containing non-oriented silicon steel after cold rolling and annealing at different temperatures for 240 s (φ1, φ2 and Φ are Euler angles)Color online(a) cold-rolled state (b) 700 ℃ (c) 750 ℃ (d) 800 ℃ (e) 850 ℃ (f) 900 ℃
Fig.6  α-fiber (a) and γ-fiber (b) texture components in Nb-containing non-oriented silicon steel after cold rolling and the different annealing processes (f(g)—orientation distribution function, g= (φ1, Φ, φ2))
Fig.7  Iron losses of power frequency (P1.5/50) and high frequency (P1.0/400), magnetic induction intensity (B50) (a) and mechanical properties (b) in Nb-containing non-oriented silicon steel after the different annealing processes (ReL—yield strength, Rm—tensile strength, A—elongation)
Fig.8  The relationships of the intensity of α texture and the magnetic induction
Fig.9  Contributions from several strengthening mechanisms to yield strength of Nb-containing non-oriented silicon steel after annealing at different temperatures
[1] Sha Y H, Sun C, Zhang F, et al. Strong cube recrystallization texture in silicon steel by twin-roll casting process [J]. Acta Mater., 2014, 76: 106
[2] Zhang N, Yang P, Mao W M. Through process texture evolution of new thin-gauge non-oriented electrical steels with high permeability [J]. J. Magn. Magn. Mater., 2016, 397: 125
[3] Gong J, Luo H W. Progress on the research of high-strength non-oriented silicon steel sheets in traction motors of hybrid/electrical vehicles [J]. J. Mater. Eng., 2015, 43(6): 102
[3] 龚 坚, 罗海文. 新能源汽车驱动电机用高强度无取向硅钢片的研究与进展 [J]. 材料工程, 2015, 43(6): 102
[4] Pan Z D, Xiang L, Zhang C, et al. Development of high-strength non-oriented electrical steel by TSCR [J]. Iron Steel Van. Tit., 2013, 34(4): 78
[4] 潘振东, 项 利, 张 晨等. TSCR 试制高强度无取向电工钢 [J]. 钢铁钒钛, 2013, 34(4): 78
[5] Wang Y Q, Zhang X M, He Z, et al. Effect of copper precipitates on mechanical and magnetic properties of Cu-bearing non-oriented electrical steel processed by twin-roll strip casting [J]. Mater. Sci. Eng., 2017, A703: 340
[6] Lu Y K, Zu G Q, Luo L, et al. Investigation of microstructure and properties of strip-cast 4.5 wt% Si non-oriented electrical steel by different rolling processes [J]. J. Magn. Magn. Mater., 2019, 497: 165975
[7] Tanaka I, Yashiki H, Iwamoto S, et al. Development of high strength electrical steel SXRC of resource-saving design [J]. J. Iron Steel Res. Int., 2011, 6: 15
[8] Liu B, Song X L, Zhu R Q, et al. Effect of niobium on goss texture evolution of low temperature orientation silicon steel [J]. Trans. Mater. Heat Treat., 2017, 38(11): 71
[8] 刘 彪, 宋新莉, 朱瑞琪等. Nb对低温取向硅钢高斯织构演变的影响 [J]. 材料热处理学报, 2017, 38(11): 71
[9] Huang J, Luo H W. Influence of annealing process on microstructures, mechanical and magnetic properties of Nb-containing high-strength non-oriented silicon steel [J]. Acta Metall. Sin., 2018, 54: 377
[9] 黄 俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响 [J]. 金属学报, 2018, 54: 377
[10] Honda A, Senda K, Sadahiro K. Electrical steel for motors of electric and hybrid vehicles [J]. Kawasaki Steel Tech. Rep., 2002, 34: 85
[11] Goldschmidt H J. The constitution of the iron-niobium-silicon system [J]. J. Iron Steel Inst., 1960, 194: 169
[12] Raghavan V, Ghosh G. The Fe-Nb-Si (iron-niobium-silicon) system [J]. Trans. Indian Inst. Met., 1984, 37: 421
[13] Raghavan V. Phase Diagrams of Ternary Iron Alloys [M]. Metals Park, Ohio: ASM International, 1987: 226
[14] Singh B N, Gupta K P. Laves and μ phases in the Nb-Fe-Si and Nb-Co-Si systems [J]. Metall. Trans., 1972, 3: 1427
[15] Wang D, Yang S Y, Yang M J, et al. Experimental investigation of phase equilibria in the Fe-Nb-Si ternary system [J]. J. Alloys Compd., 2014, 605: 183
[16] Muraki M, Toge T, Sakata K, et al. Formation mechanism of {111} recrystallization texture in ferritic steels [J]. Tetsu Hagané, 1999, 85: 751
[16] 村木 峰男, 峠 哲雄, 坂田 敬, 待って. フェライト鋼の{111}再結晶集合組織生成機構の-考察. 鉄と鋼, 1999, 85: 751
[17] Park J T, Szpunar J A. Evolution of recrystallization texture in nonoriented electrical steels [J]. Acta Mater., 2003, 51: 3037
[18] Hutchinson W B. Development of textures in recrystallization [J]. Met. Sci., 1974, 8: 185
[19] Park J T, Szpunar J A. Texture development during grain growth in nonoriented electrical steels [J]. ISIJ Int., 2005, 45: 743
[20] Jenkins K, Lindenmo M. Precipitates in electrical steels [J]. J. Magn. Magn. Mater., 2008, 320: 2423
[21] Li M, Xiao Y D, Wang W, et al. Effect of annealing parameter on microstructure and magnetic properties of cold rolled non-oriented electrical steel [J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 74
[22] Zhao Y H, Zhu G H, Wang L T, et al. Effect of annealing temperature on properties of thin specification non-oriented electric steel [J]. Metall. Funct. Mater., 2012, 19(2): 22
[22] 赵亚慧, 朱国辉, 王立涛等. 退火温度对CSP生产薄规格无取向电工钢性能的影响 [J]. 金属功能材料, 2012, 19(2): 22
[23] Yang F, Xiong C G, Xiang L, et al. Effect of annealing time on microstructure of non-oriented electrical steel 50W600 [J]. Hot Work. Technol., 2015, 44: 208
[23] 杨 帆, 熊晨光, 项 利等. 退火时间对无取向电工钢50W600组织的影响 [J]. 热加工工艺, 2015, 44: 208
[24] Zhang N, Yang P, Mao W N. {001}<120>-{113}<361> recrystallization textures induced by initial {001} grains and related microstructure evolution in heavily rolled electrical steel [J]. Mater. Charact., 2016, 119: 225
[25] Sidor J J, Verbeken K, Gomes E, et al. Through process texture evolution and magnetic properties of high Si non-oriented electrical steels [J]. Mater. Charact., 2012, 71: 49
[26] Zu G Q, Zhang X M, Zhao J W, et al. Analysis of {411}<148> recrystallisation texture in twin-roll strip casting of 4.5 wt% Si non-oriented electrical steel [J]. Mater. Lett., 2016, 180: 63
[27] He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
[28] Ungár T, Gubicza J, Ribárik G, et al. Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals [J]. J. Appl. Crystallogr., 2001, 34: 298
[29] Shintani T, Murata Y. Evaluation of the dislocation density and dislocation character in cold rolled type 304 steel determined by profile analysis of X-ray diffraction [J]. Acta Mater., 2011, 59: 4314
[30] Ungár T, Tichy G. The effect of dislocation contrast on X-ray line profiles in untextured polycrystals [J]. Phys. Status Sol., 1999, 171A: 425
[31] Yin F, Hanamura T, Umezawa O, et al. Phosphorus-induced dislocation structure variation in the warm-rolled ultrafine-grained low-carbon steels [J]. Mater. Sci. Eng., 2003, A354: 31
[32] Ungár T, Borbély A. The effect of dislocation contrast on X-ray line broadening: A new approach to line profile analysis [J]. Appl. Phys. Lett., 1996, 69: 3173
[33] Kunieda T, Nakai M, Murata Y, et al. Estimation of the system free energy of martensite phase in an Fe-Cr-C ternary alloy [J]. ISIJ Int., 2005, 45: 1909
[34] Gladman T. The Physical Metallurgy of Microalloyed Steels [M]. London: Maney Pub, 1997: 40
[35] Pickering F B. Physical Metallurgy and the Design of Steels [M]. London: Applied Science Publishers, 1978: 63
[1] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[2] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[3] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[4] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[5] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[6] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[7] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[8] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[9] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[10] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[11] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[12] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[13] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[14] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[15] GONG Shengkai, SHANG Yong, ZHANG Ji, GUO Xiping, LIN Junpin, ZHAO Xihong. Application and Research of Typical Intermetallics-Based High Temperature Structural Materials in China[J]. 金属学报, 2019, 55(9): 1067-1076.
No Suggested Reading articles found!