Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (12): 1545-1556    DOI: 10.11900/0412.1961.2021.00145
Research paper Current Issue | Archive | Adv Search |
Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel
JIANG Weining1, WU Xiaolong1, YANG Ping1(), GU Xinfu1, XIE Qingge2
1.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel. Acta Metall Sin, 2022, 58(12): 1545-1556.

Download:  HTML  PDF(4545KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The texture and microstructure varying between thicknesses of hot-rolled sheets can be inherited to the final recrystallized sheets in silicon steel and affect its magnetic properties. Deformed and dynamic recrystallized microstructures produced in the surface layers during hot rolling bring different shear textures. Based on the study of deformed shear textures in the surface layers of hot-rolled sheets, it is necessary to examine the shear textures in the dynamic recrystallization zone. The cast slabs of Fe-2.5Si-0.8Al silicon steels with columnar grains are hot rolled in multiple passes. This study investigates the formation of dynamic recrystallization zone and characteristics of shear texture using EBSD technique. Consequently, the distribution of different shear textures in the fine grain region is obtained. The results indicate that the dynamic recrystallization zone in the horizontal band appears in the subsurface layer; simultaneously, it is surrounded by deformed grains with different shear textures in hot-rolled sheets with 88% reduction. A Copper texture component easily appears in the sub-surface layer and becomes more than Goss and Brass texture components in dynamic recrystallization zone and the surrounding deformed matrix when subjected to heavy shearing. The Goss texture is weak in the dynamic recrystallization zone. This is because excessive shearing is harmful to the formation and retention of Goss texture. The proportion of Brass texture in the dynamic recrystallization zone is the same as that in the surrounding deformed matrix. Additionally, the shear textures of the laboratory hot-rolled sheets and the industrial hot-rolled sheets with 98.9% reduction are compared. In the industrial hot-rolled sheets, the Goss texture is most from the subsurface to the center layer (in the position between subsurface and center layers).

Key words:  silicon steel      columnar grain      shear texture      dynamic recrystallization      hot rolling     
Received:  07 April 2021     
ZTFLH:  TG124.1  
Fund: National Natural Science Foundation of China(51931002)
About author:  YANG Ping, professor, Tel: (010)82376968, E-mail: yangp@mater.ustb.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00145     OR     https://www.ams.org.cn/EN/Y2022/V58/I12/1545

Fig.1  OM images of Fe-2.5Si-0.8Al silicon steel hot-rolled sheets with 52% reduction (a), 71% reduction (b), and 88% reduction (c), and enlarged view corresponding to dashed frame in Fig.1c (d) (Arrows in Fig.1a show the equiaxed grains, oval frame in Fig.1b shows the equiaxed grains in banded distribution, rectangle frames in Fig.1c show the dynamic recrystallization zones; RD—rolling direction, ND—normal direction)
Fig.2  EBSD analyses of semithick Fe-2.5Si-0.8Al hot-rolled sheets with 88% reduction
(a) inverse pole figure (IPF) map (b) orientation distribution
(c) orientation distribution function (ODF), φ2 = 45° (φ1, Φ, φ2—Euler angles in orientation space)
Texture typeDynamic recrystallization grainDeformation grain
VPVP
Goss0.216.865.8727.61
Brass1.3845.107.2734.20
Copper1.4748.048.1238.19
Table 1  Volume fraction of shear texture components in dynamic recrystallization grains (grain size 12-30 μm) and deformed grains (grain size > 30 μm) and the proportion in the shear textures
Fig.3  EBSD analyses (region 1) of through thickness Fe-2.5Si-0.8Al hot-rolled sheets with 88% reduction
(a) IPF map (b) orientation distribution (c) ODF, φ2 = 45°
(d) volume fraction of shear textur components in dynamic recrystallized grains in red rectangular zone of Fig.3b
Fig.4  EBSD analyses (region 2) of through thickness Fe-2.5Si-0.8Al hot-rolled sheets with 88% reduction
(a) IPF map (b) orientation distribution (c) ODF, φ2 = 45°
(d) volume fraction of shear texture components in dynamic recrystallized grains in red rectangular zones of Fig.4b
Fig.5  EBSD analyses (region 3) of through thickness Fe-2.5Si-0.8Al hot-rolled sheets with 88% reduction
(a) IPF map (b) orientation distribution (c) ODF, φ2 = 45°
(d) volume fraction of shear texture components in dynamic recrystallized grains in red rectangular zones of Fig.5b
Fig.6  EBSD analyses (region 4) of through thickness Fe-2.5Si-0.8Al hot-rolled sheets with 88% reduction
(a) IPF map (b) orientation distribution (c) ODF, φ2 = 45°
(d) volume fraction of shear texture components in dynamic recrystallized grains in red rectangular zones of Fig.6b
Fig.7  EBSD analyses (region 5) of through thickness Fe-2.5Si-0.8Al hot-rolled sheets with 88% reduction
(a) IPF map (b) orientation distribution (c) ODF, φ2 = 45°
(d) volume fraction of shear texture components in dynamic recrystallized grains in red rectangular zone of Fig.7b
Fig.8  Volume fractions of shear texture components in deformation grains of Fe-2.5Si-0.8Al hot-rolled sheets with 52%, 71%, and 88% reductions
Fig.9  IPF-Z maps (a-c) and φ2 = 45° section ODF (d-f) in different thicknesses of industrial hot-rolled sheets (TD—transverse direction)
(a, d) S = 0.9 (S—relative position from center) (b, e) S = 0.5 (c, f) S = 0
Fig.10  Volume fractions of shear texture components in different thicknesses of industrial hot-rolled sheets (Allowable deviation angle is 15°)
1 Calvillo P R, Salazar N, Schneider J, et al. Microstructure characterization by EBSD of hot rolled high-silicon steel [J]. Defect Diffus. Forum, 2008, 273-276: 69
doi: 10.4028/www.scientific.net/DDF.273-276.69
2 Stöcker A, Schmidtchen M, Kawalla R. Hot rolling simulation for non-oriented electrical steel [J]. AIP Conf. Proc., 2017, 1896: 190021
3 Wu X L, Yang P, Gu X F, et al. The influence of normalization temperatures on different texture components and magnetic properties of nonoriented electrical steels [J]. Steel. Res. Int., 2021, 92: 2000361
4 Inagaki H, Suda T. The development of rolling textures in low-carbon steels [J]. Texture, Stress, Microstr., 1972, 1: 612480
5 Koh P K, Dunn C G. Cold-rolled textures of silicon-iron crystals [J]. JOM, 1955, 7(2): 401
doi: 10.1007/BF03377518
6 Zhang N, Yang P, He C X, et al. Effect of {110}<229> and {110}<112> grains on texture evolution during cold rolling and annealing of electrical steel [J]. ISIJ Int., 2016, 56: 1462
doi: 10.2355/isijinternational.ISIJINT-2016-145
7 Shao Y Y, Yang P, Mao W M. Analysis on grain boundary effects of columnar grained electrical steel [J]. Acta Metall. Sin., 2014, 50: 259
doi: 10.3724/SP.J.1037.2013.00459
邵媛媛, 杨平, 毛卫民. 电工钢柱状晶热、冷轧时晶界作用分析 [J]. 金属学报, 2014, 50: 259
doi: 10.3724/SP.J.1037.2013.00459
8 Matsuo M, Sakai T, Suga Y. Origin and development of through-the-thickness variations of texture in the processing of grain-oriented silicon steel [J]. Metall. Trans., 1986, 17A: 1313
9 Yang P, Shao Y Y, Mao W M, et al. Orientation evolutions during hot rolling of electrical steel containing initial columnar grains [J]. Mater. Sci. Forum, 2012, 702-703: 754
doi: 10.4028/www.scientific.net/MSF.702-703.754
10 Shao Y Y, Yang P, Fu Y J, et al. Texture evolution of columnar grains in electrical steel during hot rolling [J]. J. Iron Steel Res. Int., 2013, 20: 99
11 Fedoseev A I, Raabe D, Gottstein G. Texture development and simulation of inhomogeneous deformation of FeCr during hot rolling [J]. Mater. Sci. Forum, 1994, 157-162: 1771
doi: 10.4028/www.scientific.net/MSF.157-162.1771
12 Shimizu Y, Ito Y, Iida Y. Formation of the Goss orientation near the surface of 3 pct silicon steel during hot rolling [J]. Metall. Trans., 1986, 17A: 1323
13 Cruz-Gandarilla F, Baudin T, Penelle R, et al. Study of local microstructure and texture heterogeneities in hot rolled CGO Fe-3%Si sheets [J]. Mater. Sci. Forum, 2004, 467-470: 123
doi: 10.4028/www.scientific.net/MSF.467-470.123
14 Cruz-Gandarilla F, Penelle R, León H M, et al. A study of local microstructure and texture heterogeneities in a CGO Fe3%Si alloy from hot rolling to primary recrystallization [J]. Mater. Sci. Forum, 2005, 495-497: 483
doi: 10.4028/www.scientific.net/MSF.495-497.483
15 Cruz-Gandarilla F, Baudin T, Mathon M H, et al. Characterization of global and local textures in hot rolled CGO Fe3%Si [J]. Mater. Sci. Forum, 2006, 509: 25
doi: 10.4028/www.scientific.net/MSF.509.25
16 Lobanov M L, Redikul'tsev A A, Rusakov G M, et al. Effect of carbon on texture formation in electrical steel Fe-3% Si under hot rolling [J]. Metal Sci. Heat Treat., 2015, 56: 646
doi: 10.1007/s11041-015-9815-4
17 Mehdi M, He Y L, Hilinski E J, et al. The origins of the Goss orientation in non-oriented electrical steel and the evolution of the Goss texture during thermomechanical processing [J]. Steel Res. Int., 2019, 90: 1800582
18 Yan M Q, Qian H, Yang P, et al. Behaviors of brass texture and its influence on Goss texture in grain oriented electrical steels [J]. Acta Metall. Sin., 2012, 48: 16
doi: 10.3724/SP.J.1037.2011.00421
颜孟奇, 钱浩, 杨平 等. 电工钢中黄铜织构行为及其对Goss织构的影响 [J]. 金属学报, 2012, 48: 16
doi: 10.3724/SP.J.1037.2011.00421
19 Mukhopadhyay A, Howard I C, Sellars C M. Finite element modelling of effects of roll gap geometry in hot rolling [J]. Mater. Sci. Technol., 2005, 21: 901
doi: 10.1179/174328405X47546
20 Jia M X, Lü Y P, Xu L F, et al. The influence of friction on the texture formation of a IF steel during hot rolling in the ferrite region [J]. Steel Res. Int., 2013, 84: 761
doi: 10.1002/srin.201200260
21 Jiang W N, Wu X L, Yang P, et al. Relationship between the initial {100} textures and the shear textures developed in sheet surface during hot rolling of non-oriented silicon steel [J]. Mater. Charact., 2021, 182: 111534
22 Calvillo P R, Reis A C C, Kestens L, et al. Grain refinement by high temperature plane-strain compression of Fe-2%Si steel [J]. Mater. Sci. Forum, 2006, 503-504: 977
doi: 10.4028/www.scientific.net/MSF.503-504.977
23 Tsuji N, Tsuzaki K, Maki T. Effects of rolling reduction and annealing temperature on the recrystallization structure of solidified columnar crystals in a 19% Cr ferritic stainless steel [J]. ISIJ Int., 1994, 34: 1008
doi: 10.2355/isijinternational.34.1008
24 Hsun H. Microbands in a rolled Si-Fe crystal and their role in recrystallization [J]. Acta Metall., 1962, 10: 1112
doi: 10.1016/0001-6160(62)90083-4
25 Yan M Q, Yang P, Jiang Q W, et al. Influence of rolling direction on the texture evolution of Fe-3%Si alloy [J]. Acta Metall. Sin., 2011, 47: 25
颜孟奇, 杨平, 蒋奇武 等. 轧制方向对Fe-3%Si合金织构演变规律的影响 [J]. 金属学报, 2011, 47: 25
doi: 10.3724/SP.J.1037.2010.00432
26 Wada T, Matsumoto F, Kuroki K. On the recrystallization of 3%Si-Fe (001)[110] single crystal [J]. J. Jpn. Inst. Met., 1968, 32: 767
doi: 10.2320/jinstmet1952.32.8_767
27 Li Z C, Yang P, Yan M Q, et al. Evolution of microstructure and textures of {100} initial texture in an electrical steel [J]. Chin. J. Stereol. Image. Anal., 2009, 14: 237
李志超, 杨平, 颜孟奇 等. 电工钢中{100}织构的演变规律 [J]. 中国体视学与图像分析, 2009, 14: 237
28 Park J T, Szpunar J A. Evolution of recrystallization texture in nonoriented electrical steels [J]. Acta. Mater., 2003, 51: 3037
doi: 10.1016/S1359-6454(03)00115-0
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[4] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[5] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[6] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[7] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[8] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[9] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[10] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[11] ZHANG Yong, LI Xinxu, WEI Kang, WAN Zhipeng, JIA Chonglin, WANG Tao, LI Zhao, SUN Yu, LIANG Hongyan. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. 金属学报, 2020, 56(10): 1401-1410.
[12] Xu LI,Qingbo YANG,Xiangze FAN,Yonglin GUO,Lin LIN,Zhiqing ZHANG. Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy[J]. 金属学报, 2019, 55(6): 709-719.
[13] Yahui DENG,Yinhui YANG,Jianchun CAO,Hao QIAN. Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel[J]. 金属学报, 2019, 55(4): 445-456.
[14] Shuangjie CHU,Yongjie YANG,Zhenghua HE,Yuhui SHA,Liang ZUO. Calculation of Magnetostriction Coefficient for Laser-Scribed Grain-Oriented Silicon Steel Based onMagnetic Domain Interaction[J]. 金属学报, 2019, 55(3): 362-368.
[15] Xiting ZHONG, Lei WANG, Feng LIU. Study on Formation Mechanism of Necklace Structure in Discontinuous Dynamic Recrystallization of Incoloy 028[J]. 金属学报, 2018, 54(7): 969-980.
No Suggested Reading articles found!