Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (11): 1439-1447    DOI: 10.11900/0412.1961.2021.00550
Current Issue | Archive | Adv Search |
Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature
LOU Feng1, LIU Ke1(), LIU Jinxue2, DONG Hanwu3, LI Shubo1, DU Wenbo1
1.Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
2.Zhengzhou Light Alloy Institute Co. Ltd., Zhengzhou 450041, China
3.Key Laboratory of Advanced Forming of Metallic Materials, Chongqing Academy of Sciece and Technology, Chongqing 401123, China
Cite this article: 

LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature. Acta Metall Sin, 2023, 59(11): 1439-1447.

Download:  HTML  PDF(5255KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As lightweight requirements rise in transportation, aerospace, and other industries, magnesium alloys have a great application prospect. However, the low formability capabilities of magnesium alloys lead to a severe limit in applications. At present, there are many reports on the influences of texture and second phases on the formability of magnesium alloys at room temperature. Nevertheless, the dominant factors affecting the formability performance of magnesium alloys at room temperature are not clear. In this study, the development of the microstructures and texture of Mg-xZn-0.5Er (x = 0.5, 2.0, 3.0, 4.0, mass fraction, %) alloy sheets were studied, and the impact of the texture and second phases on the formability of these sheets were also investigated. The findings showed that the increase in Zn addition led to an early and complete dynamic recrystallization (DRX) in Mg-Zn-Er alloys sheets, and these recrystallized grains would expand significantly during subsequent hot rolling processes. These recrystallized grains with a large size were typically elongated and then helped to create a strong basal texture. Thus, it was discovered that the microstructures of these sheets were typically made up of equiaxed and elongated grains. The formability performance of these sheets was strongly related to the size of the second phases and the texture. The formability of the sheets containing microscopic second phases mainly depended on the basal texture, while the formability of the sheets which contained coarse second phases was mostly influenced by the second phases and basal texture. Particularly, when the component of the coarse second was larger, the formability would get more inferior due to the predominant role of the second phase at room temperature.

Key words:  Mg-Zn-Er alloy      dynamic recrystallization      texture      second phase      formability     
Received:  13 December 2021     
ZTFLH:  TG146.22  
Fund: National Key Research and Development Program of China(2021YFB3701100);Scientific Re-search Institution Performance Incentive and Guidance Special Project of Chongqing(cstc2021jxjl50004);Scientific Re-search Institution Performance Incentive and Guidance Special Project of Chongqing(cstc2021jxjl50004)
Corresponding Authors:  LIU Ke, associate professor, Tel: (010)67392423, E-mail: lk@bjut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00550     OR     https://www.ams.org.cn/EN/Y2023/V59/I11/1439

Fig.1  OM images of as-rolled Mg-0.5Zn-0.5Er (a, d, g, j), Mg-2.0Zn-0.5Er (b, e, h, k), and Mg-4.0Zn-0.5Er (c, f, i, l) alloys on the rolling direction-transverse direction (RD-TD) plane with thickness reductions of 25% (a-c), 44% (d-f), 54% (g-i), and 64% (j-l) (DRX—dynamic recrystallization)
Fig.2  EBSD analyses of Mg-2.0Zn-0.5Er alloy on the RD-normal direction (ND) plane with thickness reduction of 25%
(a) inverse pole figure (IPF)
(b1-b4) EBSD analyses of part 1 in Fig.2a for IPF (b1), {0001} pole figure (b2), and misorientation angle distributions (b3, b4) (TDRX—twin dynamic recrystallization)
(c1-c4) EBSD analyses of part 2 in Fig.2a for IPF (c1), misorientation angle distribution (c2), and {0001} pole figures (c3, c4)
(d1-d3) EBSD analyses of part 3 in Fig.2a for IPF (d1), distribution of misorientation along line L1 in Fig.2d1 (d2), and {0001} pole figure (d3)
Fig.3  EBSD analyses of Mg-2.0Zn-0.5Er alloy on the RD-ND plane with thickness reduction of 44%
(a) IPF and {0001} pole figure (inset)
(b) local enlarged IPF of the part 4 in Fig.3a (CDRX—continuous dynamic recrystallization)
Fig.4  OM images of as-rolled Mg-0.5Zn-0.5Er (a), Mg-2.0Zn-0.5Er (b), Mg-3.0Zn-0.5Er (c), and Mg-4.0Zn-0.5Er (d) alloys on the RD-TD plane with thickness reduction of 78%
Fig.5  EBSD images of Mg-0.5Zn-0.5Er (a), Mg-2.0Zn-0.5Er (b), Mg-3.0Zn-0.5Er (c), and Mg-4.0Zn-0.5Er (d) alloys on RD-ND plane with thickness reduction of 78%
Fig.6  Cupping formabilities of as-rolled Mg-0.5Zn-0.5Er (a), Mg-2.0Zn-0.5Er (b), Mg-3.0Zn-0.5Er (c), and Mg-4.0Zn-0.5Er (d) alloys with thickness reduction of 78% at room temperature
Fig.7  Failure analyses of cup test of as-rolled Mg-2.0Zn-0.5Er alloys
(a) cross-section image
(b1-b4) SEM images of areas 1-4 in Fig.7a, respectively
(c1-c4) IPFs of box areas in Figs.7b1-b4, respectively
(d1-d4) pole figures of Figs.7c1-c4, respectively
1 You S H, Huang Y D, Kainer K U, et al. Recent research and developments on wrought magnesium alloys [J]. J. Magn. Alloy., 2017, 5: 239
doi: 10.1016/j.jma.2017.09.001
2 Liu X W, Liu Y, Jin B, et al. Microstructure evolution and mechanical properties of a SMATed Mg alloy under in situ SEM tensile testing [J]. J. Mater. Sci. Technol., 2017, 33: 224
doi: 10.1016/j.jmst.2016.11.012
3 Zhang J, Joshi S P. Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium [J]. J. Mech. Phys. Solids, 2012, 60: 945
doi: 10.1016/j.jmps.2012.01.005
4 Sabat R K, Brahme A P, Mishra R K, et al. Ductility enhancement in Mg-0.2%Ce alloys [J]. Acta Mater., 2018, 161: 246
doi: 10.1016/j.actamat.2018.09.023
5 Ding W J, Jin L, Wu W X, et al. Texture and texture optimization of wrought Mg alloy [J]. Chin. J. Nonferrous Met., 2011, 21: 2371
丁文江, 靳 丽, 吴文祥 等. 变形镁合金中的织构及其优化设计 [J]. 中国有色金属学报, 2011, 21: 2371
6 Huang X S, Suzuki K, Chino Y, et al. Influence of aluminum content on the texture and sheet formability of AM series magnesium alloys [J]. Mater. Sci. Eng., 2015, A633: 144
7 Nakata T, Xu C, Ohashi H, et al. New Mg-Al based alloy sheet with good room-temperature stretch formability and tensile properties [J]. Scr. Mater., 2020, 180: 16
doi: 10.1016/j.scriptamat.2020.01.015
8 Wang Q H, Shen Y Q, Jiang B, et al. A good balance between ductility and stretch formability of dilute Mg-Sn-Y sheet at room temperature [J]. Mater. Sci. Eng., 2018, A736: 404
9 Bian M Z, Huang X S, Mabuchi M, et al. Compositional optimization of Mg-Zn-Sc sheet alloys for enhanced room temperature stretch formability [J]. J. Alloys Compd., 2020, 818: 152891
doi: 10.1016/j.jallcom.2019.152891
10 Luo Z P, Zhang S Q, Tang Y L, et al. Thermodynamics of Mg-Zn-RE system solutions forming stable quasicrystals [J]. Scr. Metall. Mater., 1994, 30: 393
doi: 10.1016/0956-716X(94)90592-4
11 Xu D K, Tang W N, Liu L, et al. Effect of W-phase on the mechanical properties of as-cast Mg-Zn-Y-Zr alloys [J]. J. Alloys Compd., 2008, 461: 248
doi: 10.1016/j.jallcom.2007.07.096
12 Kawamura Y, Hayashi K, Inoue A, et al. Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa [J]. Mater. Trans., 2001, 42: 1172
doi: 10.2320/matertrans.42.1172
13 Al-Samman T. Modification of texture and microstructure of magnesium alloy extrusions by particle-stimulated recrystallization [J]. Mater. Sci. Eng., 2013, A560: 561
14 Wang Q F, Du W B, Liu K, et al. Microstructure, texture and mechanical properties of as-extruded Mg-Zn-Er alloys [J]. Mater. Sci. Eng., 2013, A581: 31
15 Meng Y Z, Yu J M, Liu K, et al. The evolution of long-period stacking ordered phase and its effect on dynamic recrystallization in Mg-Gd-Y-Zn-Zr alloy processed by repetitive upsetting-extrusion [J]. J. Alloys Compd., 2020, 828: 154454.
doi: 10.1016/j.jallcom.2020.154454
16 Humphreys F J. Recrystallization mechanisms in two-phase alloys [J]. Met. Sci., 1979, 13: 136
doi: 10.1179/msc.1979.13.3-4.136
17 Lou F, Liu K, Lui J X, et al. Microstructure and formability at room temperature of as-annealing Mg-xZn-0.5Er alloy sheets [J]. Chin. J. Nonferrous Met., 2022, 32: 365
娄 峰, 刘 轲, 刘金学 等. 退火态Mg-xZn-0.5Er合金板材组织及室温成形性能 [J]. 中国有色金属学报, 2022, 32: 365
18 Kaibyshev R. Dynamic recrystallization in magnesium alloys [A]. Advances in Wrought Magnesium Alloys [M]. Cambridge, UK: Woodhead Publishing, 2012: 186
19 Fatemi-Varzaneh S M, Zarei-Hanzaki A, Beladi H. Dynamic recrystallization in AZ31 magnesium alloy [J]. Mater. Sci. Eng., 2007, A456: 52
20 Al-Samman T, Gottstein G. Dynamic recrystallization during high temperature deformation of magnesium [J]. Mater. Sci. Eng., 2008, A490: 411
21 Vaughan M W, Nasim W, Dogan E, et al. Interplay between the effects of deformation mechanisms and dynamic recrystallization on the failure of Mg-3Al-1Zn [J]. Acta Mater., 2019, 168: 448
doi: 10.1016/j.actamat.2019.02.010
22 Chino Y, Huang X S, Suzuki K, et al. Influence of Zn concentration on stretch formability at room temperature of Mg-Zn-Ce alloy [J]. Mater. Sci. Eng., 2010, A528: 566
23 Liu K, Lou F, Fu J J, et al. Microstructure and corrosion behaviors of as-rolled Mg-Zn-Er alloy sheets [J]. Trans. Nonferrous Met. Soc. China, 2022, 32: 1881
doi: 10.1016/S1003-6326(22)65915-6
24 Liu K, Sun C C, Wang Z H, et al. Microstructure, texture and mechanical properties of Mg-Zn-Er alloys containing I-phase and W-phase simultaneously [J]. J. Alloys Compd., 2016, 665: 76
doi: 10.1016/j.jallcom.2015.10.262
25 Qin D H, Wang M J, Sun C Y, et al. Interaction between texture evolution and dynamic recrystallization of extruded AZ80 magnesium alloy during hot deformation [J]. Mater. Sci. Eng., 2020, A788: 139537
26 Suh B C, Kim J H, Hwang J H, et al. Twinning-mediated formability in Mg alloys [J]. Sci. Rep., 2016, 6: 22364
doi: 10.1038/srep22364
27 Robson J D, Henry D T, Davis B. Particle effects on recrystallization in magnesium-manganese alloys: Particle-stimulated nucleation [J]. Acta Mater., 2009, 57: 2739
doi: 10.1016/j.actamat.2009.02.032
28 Robson J D, Henry D T, Davis B. Particle effects on recrystallization in magnesium-manganese alloys: Particle pinning [J]. Mater. Sci. Eng., 2011, A528: 4239
29 Liu P, Jiang H T, Duan X G, et al. Effects of yttrium (Y) and cerium (Ce) on microstructure and stretch formability of hot rolled Mg-1.5Zn magnesium sheet at room temperature [J]. J. Mater Eng., 2014, (12): 1
刘 鹏, 江海涛, 段晓鸽 等. 稀土元素Y和Ce对热轧Mg-1.5Zn镁合金组织和室温成形性能的影响 [J]. 材料工程, 2014, (12): 1
30 Cai Z X, Tang D, Jiang H T, et al. Influence of Gd concentration on texture and stretch formability of rolled Mg-Zn-Gd alloys at room temperature [J]. Rare Met. Mater. Eng., 2013, 42: 2073
蔡正旭, 唐 荻, 江海涛 等. 不同Gd含量对变形Mg-Zn-Gd合金织构和室温成形性能的影响 [J]. 稀有金属材料与工程, 2013, 42: 2073
[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[3] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[4] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[5] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[6] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[7] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[8] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[9] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[10] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[11] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[12] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[13] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[14] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[15] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
No Suggested Reading articles found!