Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (7): 880-890    DOI: 10.11900/0412.1961.2020.00352
Research paper Current Issue | Archive | Adv Search |
Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy
YAN Mengqi1(), CHEN Liquan2, YANG Ping2, HUANG Lijun1, TONG Jianbo1, LI Huanfeng1, GUO Pengda1
1.AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy. Acta Metall Sin, 2021, 57(7): 880-890.

Download:  HTML  PDF(39691KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Titanium alloys have the advantages of high specific strength, fatigue resistance, and corrosion resistance. Also, they are widely used in the aviation, aerospace, weapons, petroleum, and chemical industries and other fields. The use of large-scale and integrated aviation forgings, which are an important development in titanium alloy manufacturing technology, can increase the service life, safety and reliability of aircraft structures and engines, and simultaneously reduce their structural weight and shorten their manufacturing cycle. However, problems such as a decline in mechanical properties and the presence of abnormal low-magnification structures due to the strong β phase texture have gradually been revealed. For example, large-size near-β titanium alloy bars often have the problem of coarse and uneven macrostructures, and the center layer of these bars tend to form a strong {100} β phase texture. These defects are easily inherited in the forgings, which adversely affect their performance and threaten their safe use. In this work, 300 mm diameter TC18 titanium alloy bars were used as the research material. The SEM and EBSD techniques were used to study the microstructure and texture characteristics of the β phase after thermal deformation, respectively. This work compared the influence of the thermal deformation parameters (compression/stretching, deformation temperature, reduction, strain rate, and holding time) on the evolution of the β phase microstructure and texture in the TC18 titanium alloy. Also, the deformation, dynamic recovery, dynamic recrystallization, and grain growth behavior of the β phase were investigated. The results showed that when the TC18 titanium alloy was compressed and stretched in the two-phase region, the β phase was mainly dynamic recovery. After thermal compression, the {100} and the {111} textures were mainly formed, while after thermal stretching, the {110} texture was mainly formed. When it was compressed in the β phase region, as the deformation temperature increased, the reduction increased, the strain rate decreased, the strength of the {100} texture increased and the {111} texture decreased. When it was compressed in the two-phase region, as the deformation temperature increased and the reduction increased, the strength of the {100} texture increased and the {111} texture decreased. When it was stretched in the two-phase region, as the reduction increased, the strength of the {110} texture gradually increased.

Key words:  TC18 titanium alloy      hot deformation      microstructure      texture      β phase     
Received:  08 September 2020     
ZTFLH:  TG113.12  
About author:  YAN Mengqi, senior engineer, Tel: (010)62497720, E-mail: yanmengqi123@163.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00352     OR     https://www.ams.org.cn/EN/Y2021/V57/I7/880

Deformation modeTemperature / oCReduction / %Strain rate / s-1Holding time / min
Compression770, 820, 840, 890, 920, 97030, 50, 700.01, 0.1, 1, 1015, 30, 45
Stretching770, 840, 890, 92025, 35, 60, 1000.115
Table 1  Parameters used in thermal simulation
Fig.1  Low (a) and high (b) magnified SEM images of center cross section in diameter 300 mm TC18 titanium alloy bar
Fig.2  β phase textures of center cross section in diameter 300 mm TC18 titanium alloy bar
Fig.3  β phase textures in TC18 titanium alloy after hot compression at 770oC (a), 820oC (b), 840oC (c), 890oC (d), 920oC (e), and 970oC (f) with 15 min holding, 50% reduction, and 0.1 s-1 strain rate
Fig.4  Recrystallized (blue), recovery (yellow), and deformed (red) β phase grains in TC18 titanium alloy after hot compression at 770oC (a), 820oC (b), 840oC (c), 890oC (d), 920oC (e), and 970oC (f) with 15 min holding, 50% reduction, and 0.1 s-1 strain rate
Fig.5  β phase textures in TC18 titanium alloy after hot compression at 840oC, 30% (a), 840oC, 70% (b), 890oC, 30% (c), and 890oC, 70% (d) with 15 min holding and 0.1 s-1 strain rate
Fig.6  Recrystallized (blue), recovery (yellow), and deformed (red) β phase grains in TC18 titanium alloy after hot compression at 840oC, 30% (a), 840oC, 70% (b), 890oC, 30% (c), and 890oC, 70% (d) with 15 min holding and 0.1 s-1 strain rate
Fig.7  β phase textures in TC18 titanium alloy after hot compression at 840oC, 0.01 s-1 (a), 840oC, 1 s-1 (b), 840oC, 10 s-1 (c), 890oC, 0.01 s-1 (d), 890oC, 1 s-1 (e), and 890oC, 10 s-1 (f) with 15 min holding and 50% reduction
Fig.8  Recrystallized (blue), recovery (yellow), and deformed (red) β phase grains in TC18 titanium alloy after hot compression at 840oC, 0.01 s-1 (a), 840oC, 1 s-1 (b), 840oC, 10 s-1 (c), 890oC, 0.01 s-1 (d), 890oC, 1 s-1 (e), and 890oC, 10 s-1 (f) with 15 min holding and 50% reduction
Fig.9  β phase textures in TC18 titanium alloy after hot compression at 840oC, 30 min (a), 840oC, 45 min (b), 890oC, 30 min (c), and 890oC, 45 min (d) with 50% reduction and 0.1 s-1 strain rate
Fig.10  Recrystallized (blue), recovery (yellow), and deformed (red) β phase grains in TC18 titanium alloy after hot compression at 840oC, 30 min (a), 840oC, 45 min (b), 890oC, 30 min (c), and 890oC, 45 min (d) with 50% reduction and 0.1 s-1 strain rate
Fig.11  β phase textures in TC18 titanium alloy after hot stretching at 770oC (a), 840oC (b), 890oC (c), and 920oC (d) with 15 min holding, 25% reduction, and 0.1 s-1 strain rate
Fig.12  Recrystallized (blue), recovery (yellow), and deformed (red) β phase grains in TC18 titanium alloy after hot stretching at 770oC (a), 840oC (b), 890oC (c), and 920oC (d) with 15 min holding, 25% reduction, and 0.1 s-1 strain rate
Fig.13  β phase textures in TC18 titanium alloy after hot stretching at 35% (a), 60% (b), and 100% (c) with 840oC,15 min holding, and 0.1 s-1 strain rate
Fig.14  Recrystallized (blue), recovery (yellow), and deformed (red) β phase grains in TC18 titanium alloy after hot stretching at 35% (a), 60% (b), and 100% (c) with 840oC,15 min holding, and 0.1 s-1 strain rate
1 Zhang X Y, Zhao Y Q, Bai C G. Titanium Alloys and Application [M]. Beijing: Chemical Industry Press, 2005: 1
张喜燕, 赵永庆, 白晨光. 钛合金及应用 [M]. 北京: 化学工业出版社, 2005: 1
2 Huang X, Zhu Z S, Wang H H. Advanced Aeronautical Titanium Alloys and Applications [M]. Beijing: National Defence Industry Press, 2012: 1
黄 旭, 朱知寿, 王红红. 先进航空钛合金材料与应用 [M]. 北京: 国防工业出版社, 2012: 1
3 Zhu Z S. Recent research and development of titanium alloys for aviation application in China [J]. J. Aeron. Mater., 2014, 34(4): 44
朱知寿. 我国航空用钛合金技术研究现状及发展 [J]. 航空材料学报, 2014, 34(4): 44
4 Li P C. Production status and development trend of heavy aviation die forging [J]. Heavy Cast. Forg., 2011, (2): 39
李蓬川. 大型航空模锻件的生产现状及发展趋势 [J]. 大型铸锻件, 2011, (2): 39
5 Wang S Y, Li H Q, Dong Y P, et al. Development of large single-piece forgings and heavy forging presses in aerospace forging industry [J]. China Metalform. Equip. Manuf. Technol., 2009, 44: 31
王淑云, 李惠曲, 东赟鹏等. 大型模锻件和模锻液压机与航空锻压技术 [J]. 锻压装备与制造技术, 2009, 44: 31
6 Zhang Y Q, Guo H Z, Sun H L, et al. Effect of heat treatment on microstructure and mechanical properties of TC18 alloy [J]. Mater. Heat Treat., 2012, 41(6): 147
张永强, 郭鸿镇, 孙红兰等. 热处理对TC18合金显微组织和力学性能的影响 [J]. 材料热处理技术, 2012, 41(6): 147
7 Glavicic M G, Goetz R L, Barker D R, et al. Modeling of texture evolution during hot forging of alpha/beta titanium alloys [J]. Metall. Mater. Trans., 2008, 39A: 1759
8 Yan M Q, Sha A X, Zhang W F, et al. Recovery and recrystallization behavior of large sized β phase grains in TC18 titanium alloy during annealing process [J]. Mater. Sci. Forum, 2015, 817: 263
9 Li K, Yang P, Sha A X, et al. Investigation of microstructure and texture of β phase in a forged TC18 titanium alloy bar [J]. Acta Metall. Sin., 2014, 50: 707
李 凯, 杨 平, 沙爱学等. 锻态TC18钛合金棒材中β相组织和织构特征研究 [J]. 金属学报, 2014, 50: 707
10 Yan M Q, Zhang Y Q, Li K, et al. Analysis of bright band formation in Ti-55531 titanium alloy forging [J]. Chin. J. Rare Met., 2016, 40: 534
颜孟奇, 张业勤, 李 凯等. Ti-55531钛合金自由锻件亮带形成原因分析 [J]. 稀有金属, 2016, 40: 534
11 Feng X, Yan C Y, Guo H Z, et al. Research on improving structure uniformity of titanium alloy in open-die forging [J]. Hot Work. Technol., 2010, 39(23): 132
冯 霞, 严昌永, 郭鸿镇等. 改善钛合金自由锻件组织均匀性的研究 [J]. 热加工工艺, 2010, 39(23): 132
12 Yao Z K, Guo H Z, Zou Y H, et al. Method of improving structure uniformity of big size titanium open-die forgings [J]. Forg. Stamp. Technol., 2005, 30(5): 4
姚泽坤, 郭鸿镇, 邹永恒等. 改善大尺寸钛合金自由锻件组织均匀性的方法 [J]. 锻压技术, 2005, 30(5): 4
13 Xue S, Zhou J, Xiong Y S, et al. Study on microstructure control and mechanical property TA15 alloy large-scale whole frame die forging [J]. Hot Work. Technol., 2011, 40(15): 19
薛 松, 周 杰, 熊运森等. TA15钛合金大型整框模锻件组织控制及性能研究 [J]. 热加工工艺, 2011, 40(15): 19
14 Obasi G C, Birosca S, da Fonseca J Q, et al. Effect of β grain growth on variant selection and texture memory effect during αβα phase transformation in Ti-6Al-4V [J]. Acta Mater., 2012, 60: 1048
15 Obasi G C, da Fonseca J Q, Rugg D, et al. The effect of β grain coarsening on variant selection and texture evolution in a near-β Ti alloy [J]. Mater. Sci. Eng., 2013, A576: 272
16 Semiatin S L, Fagin P N, Glavicic M G, et al. Influence on texture on beta grain growth during continuous annealing of Ti-6Al-4V [J]. Mater. Sci. Eng., 2011, A299: 225
17 Markovsky P E, Matviychuk Y V, Bondarchuk V I. Influence of grain size and crystallographic texture on mechanical behavior of TIMETAL-LCB in metastable β-condition [J]. Mater. Sci. Eng., 2013, A559: 782
18 Yan M Q, Sha A X, Li K, et al. Effect of annealing temperature on microstructure and texture evolution of TC18 titanium alloy [J]. Rare Met. Mater. Eng., 2017, 46(suppl.1): 156
颜孟奇, 沙爱学, 李 凯等. 退火温度对TC18钛合金组织及织构演变规律的影响 [J]. 稀有金属材料与工程, 2017, 46(): 156
19 Li C M, Li P, Zhao M, et al. Mechanical behavior and microstructure of TA15 titanium alloy during hot compressive deformation [J]. J. Aeron. Mater., 2013, 33(3): 25
李成铭, 李 萍, 赵 蒙等. TA15钛合金高温压缩变形行为与组织研究 [J]. 航空材料学报, 2013, 33(3): 25
20 Li C M, Li P, Zhao M, et al. Microstructures and textures of TA15 titanium alloy after hot deformation [J]. Chin. J. Nonferrous Met., 2014, 24: 91
李成铭, 李 萍, 赵 蒙等. TA15钛合金的热变形微观组织与织构 [J]. 中国有色金属学报, 2014, 24: 91
21 Yao P P, Li P, Xue K M, et al. Microstructure evolution of thermal deformation TA15 titanium alloy under β phase region heating institution [J]. Chin. J. Nonferrous Met., 2014, 24: 2482
姚彭彭, 李 萍, 薛克敏等. β相区加热TA15钛合金热变形显微组织演化 [J]. 中国有色金属学报, 2014, 24: 2482
22 Babaréko A A, Belova O S, Kopylov V N, et al. Dynamic recrystallization of beta-phase in titanium alloy [J]. Met. Sci. Heat Treat., 1991, 33: 703
23 Tan M J, Chen G W, Thiruvarudchelvan S. High temperature deformation in Ti-5Al-2.5Sn alloy [J]. J. Mater. Process. Technol., 2007, 192-193: 434
24 Kubiak K, Ziaja W, Sieniawski J. Investigation of dynamic recrystallization in two-phase titanium alloy Ti-6Al-4V [J]. J. Mater. Process. Technol., 2000, 28: 93
25 Zhao Y H, Ge P, Yang G J, et al. Forging simulation of Ti-1300 alloy by hot compressing testing [J]. Rare Met. Mater. Eng., 2009, 38: 550
赵映辉, 葛 鹏, 杨冠军等. Ti-1300合金锻造加工的热压缩模拟 [J]. 稀有金属材料与工程, 2009, 38: 550
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[10] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[11] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
No Suggested Reading articles found!