Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys
ZUO Liang(), LI Zongbin(), YAN Haile, YANG Bo, ZHAO Xiang
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Cite this article:
ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys. Acta Metall Sin, 2021, 57(11): 1396-1415.
Ni-Mn-X (X = Ga, In, Sn, and Sb) alloys undergoing the first-order martensitic transformation have received attention owing to their various functional behaviors (e.g., magnetic shape-memory, magnetocaloric, and elastocaloric effects), which can be developed as materials for application in novel-intelligent sensing and solid-state refrigeration. Recently, along the line of texturation and microstructure control for the polycrystalline alloys, our group has conducted a series of explorations on the crystal structure and microstructural features, martensitic transformation crystallography, and related functional behavior of polycrystalline Ni-Mn-X alloys. In this paper, the recent progress of our group's study has been summarized.
Fund: National Natural Science Foundation of China(51431005);Fundamental Research Funds for the Central Universities(N2102006);Liaoning Revitalization Talents Program(XLYC1907082)
Fig.1 Schematics for the lattice deformation of magnetic shape memory effect through magnetic field (H)-induced variant reorientation (a) and magnetic field-induced reverse martensitic transformation (b)
Fig.2 Measured and Rietveld simulated synchrotron X-ray diffraction patterns of modulated martensite in the Ni50Mn36In14 alloy[47]
Fig.3 Schematic illustration of superstructure for the 6M martensite of Ni50Mn36In14 alloy (aM, bM, cM, and β are lattice parameters)[50]
Fig.4 EBSD orientation map for the 7M martensite inside one variant colony of Ni50Mn30Ga20 alloy[53]
Variant pair
ω
d
(°)
d1
d2
d3
A:C
82.63
-0.72881
-0.00337
-0.68471
179.75
-0.45205
0.75108
0.48117
B:D
83.00
-0.72502
-0.00263
-0.68872
179.80
-0.45635
0.74897
0.48040
A:B
97.78
0.72359
0.00377
0.69022
179.68
-0.52006
-0.65749
0.54520
C:D
96.59
0.71989
-0.00106
0.69409
179.91
0.51820
0.66528
-0.53747
A:D
179.22
0.72460
0.00431
0.68915
179.51
-0.68915
-0.00681
0.72459
B:C
179.59
0.72342
0.00311
0.69040
179.64
-0.69040
-0.00359
0.72342
Table 1 Misorientation angles (ω) and rotation axes (d) between neighbouring 7M variants of Ni50Mn30Ga20 alloy under the orthonormal reference coordinate frame[53]
Element
Type І (A:C / B:D)
Type ІІ (A:B / C:D)
Compound (A:D / B:C)
K1
{1 2 10}M
{1.0621 2 9.3785}M
{1 0 10}M
K2
{1.0621 2 9.3785}M
{1 2 10}M
<1 0 10>M
η1
<10.5541 10 0.9446>M
<10 10 1>M
<10 0 1>M
η2
<10 10 1>M
<10.5541 10 0.9446>M
<10 0 1>M
P
{1 0.057 10.5699}M
{1 0.057 10.5699}M
{0 1 0}M
s
0.2299
0.2299
0.0135
Table 2 Twinning elements of three types of twin for the 7M martensite in Ni50Mn30Ga20 alloy[53]
Fig.5 EBSD orientation maps with co-existing austenite and four distinct variants showing the diamond-shaped 7M martensite (a) and the elongation of diamond-like martensite (b)[66]
Fig.6 A high-resolution TEM image of the austenite-7M martensite interface viewed along <1 1 1>A[66]
Twin variant
Deformation matrix
A
B
C
D
Table 3 Deformation matrices of four variants for the (1 0 1)A group expressed in the frame referring to [1 0 1]A-[1 0 1]A-[0 1 0]A[66]
Fig.7 EBSD phase-indexed map (a) and orientation map (b) of coexisting austenite, 7M martensite, and NM martensite within an original austenite grain[67]
Fig.8 TEM bright-field image of co-existing 7M and NM martensite (a) and the corresponding selected area electron diffraction patterns for the 7M martensite acquired form the area D1 (b) and for the NM martensite from the area D2 (c)[68]
Fig.9 EBSD orientation maps showing the variant configuration with conventional three types of twin (a) and crossing twin (b) after applying the compressive stress of 50 MPa during martensitic transformation for the directionally solidified Ni50Mn30Ga20 alloy[76]
Fig.10 Stress-strain curves under compression (a) and the corresponding neutron diffraction patterns (b) for the directionally solidified Ni50Mn30Ga20 alloy[77]
Fig.11 EBSD orientation maps of 7M martensite for the directionally solidified Ni50Mn30Ga20 alloy under various compressive reductions of 0% (a), 2% (b), 3% (c), 4.5% (d), and 5.5% (e) (LD—loading direction, SD—solidification direction)[77]
Fig.12 Stereographic projections of Schmid factors of type-I, type-II, and compound detwinning systems for variant A (a) and variant D (b)[79]
Fig.13 EBSD orientation maps for the initial and compressively deformed 6M martensite of Ni50Mn36In14 alloy along the optimum orientation with high SF (Schmid factor) for both type-I and type-II detwinning systems (a, b) and the common zone with positive SF values for type-I, type-II, and compound detwinning systems (c, d)[79]
Fig.14 Macroscopic microstructure of the longitudinal section (a) and {0 0 10}M and {0 4 0}M pole figures measured on the transverse section by XRD (b) for the directionally solidified Ni50Mn28.5Ga21.5 alloy[80]
Fig.15 Magnetic field-induced strain as a function of applied field (a) and its reversible behavior (b) for the directionally solidified Ni50Mn28.5Ga21.5 alloy after mechanical training (μ0H—magnetic field)[80]
Fig.16 Temperature dependence of magnetization M(T) curves under various magnetic fields (a) and ΔTad values under the field change of 1.5 T (b) for the directionally solidified Ni45.3Co5.1Mn36.1In13.5 alloy (ΔTad—adiabatic temperature variation)[91]
Fig.17 Temperature dependence of ΔSM under the magnetic field change of 5 T (a) and ΔTad under the magnetic field change of 1.5 T (b) for the first and second cycles of measurement for the Ni46Co3Mn35Cu2In14 alloy (ΔSM—isothermal magnetic entropy change)[95]
Fig.18 Superelastic stress-strain curves on compression (a) and time dependence of temperature change under the compressive stress of 350 MPa (b) for the directionally solidified Ni55Mn18Ga27 alloy[99]
Fig.19 Time dependence of temperature variation at 320 K (a) and |ΔStr| values as a function of temperature deviation from TC(TC - T) (b) for the directionally solidified Ni50Mn35In15 alloy (ΔStr—transformation entropy change, TC—Curie temperature)[105]
Fig.20 Superelastic stress-strain curves on compression (a) and time dependence of temperature change under the various compressive strains (b) for the directionally solidified Ni44Mn46Sn10 alloy[106]
1
Chang L C, Read T A. Plastic deformation and diffusionless phase changes in metals—The gold-cadmium beta phase [J]. JOM, 1951, 3(1): 47
2
Buehler W J, Gilfrich J V, Wiley R C. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi [J]. J. Appl. Phys., 1963, 34: 1475
3
Otsuka K, Wayman C M, Nakai K, et al. Superelasticity effects and stress-induced martensitic transformations in Cu-Al-Ni alloys [J]. Acta Metall., 1976, 24: 207
4
Otsuka K, Sakamoto H, Shimizu K. Successive stress-induced martensitic transformations and associated transformation pseudoelasticity in Cu-Al-Ni alloys [J]. Acta Metall., 1979, 27: 585
5
Sato A, Chishima E, Soma K, et al. Shape memory effect in γ⇄ϵ transformation in Fe-30Mn-1Si alloy single crystals [J]. Acta Metall., 1982, 30: 1177
6
Wang Y, Ren X B, Otsuka K. Shape memory effect and superelasticity in a strain glass alloy [J]. Phys. Rev. Lett., 2006, 97: 225703
7
Chen H Y, Wang Y D, Nie Z H, et al. Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals [J]. Nat. Mater., 2020, 19: 712
8
Chluba C, Ge W W, de Miranda R L, et al. Ultralow-fatigue shape memory alloy films [J]. Science, 2015, 348: 1004
9
Xia J, Noguchi Y, Xu X, et al. Iron-based superelastic alloys with near-constant critical stress temperature dependence [J]. Science, 2020, 369: 855
10
Ogawa Y, Ando D, Sutou Y, et al. A lightweight shape-memory magnesium alloy [J]. Science, 2016, 353: 368
11
Ullakko K, Huang J K, Kantner C, et al. Large magnetic-field-induced strains in Ni2MnGa single crystals [J]. Appl. Phys. Lett., 1996, 69: 1966
12
Sutou Y, Imano Y, Koeda N, et al. Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys [J]. Appl. Phys. Lett., 2004, 85: 4358
13
Kainuma R, Imano Y, Ito W, et al. Magnetic-field-induced shape recovery by reverse phase transformation [J]. Nature, 2006, 439: 957
14
Dunand D C, Müllner P. Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys [J]. Adv. Mater., 2011, 23: 216
15
O'Handley R C, Murray S J, Marioni M, et al. Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape-memory materials (invited) [J]. J. Appl. Phys., 2000, 87: 4712
16
Pagounis E, Chulist R, Szczerba M J, et al. Over 7% magnetic field-induced strain in a Ni-Mn-Ga five-layered martensite [J]. Appl. Phys. Lett., 2014, 105: 052405
17
Pagounis E, Szczerba M J, Chulist R, et al. Large magnetic field-induced work output in a NiMnGa seven-layered modulated martensite [J]. Appl. Phys. Lett., 2015, 107: 152407
18
Sozinov A, Lanska N, Soroka A, et al. 12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite [J]. Appl. Phys. Lett., 2013, 102: 021902
19
Heczko O. Magnetic shape memory effect and magnetization reversal [J]. J. Magn. Magn. Mater., 2005, 290-291: 787
20
Müllner P, Chernenko V A, Kostorz G. Large cyclic magnetic-field-induced deformation in orthorhombic (14M) Ni-Mn-Ga martensite [J]. J. Appl. Phys., 2004, 95: 1531
21
Karaca H E, Karaman I, Basaran B, et al. Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals [J]. Acta Mater., 2006, 54: 233
22
Krenke T, Acet M, Wassermann E F, et al. Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In Alloys [J]. Phys. Rev., 2006, 73B: 174413
23
Krenke T, Acet M, Wassermann E F, et al. Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni-Mn-Sn alloys [J]. Phys. Rev., 2005, 72B: 014412
24
Monroe J A, Karaman I, Basaran B, et al. Direct measurement of large reversible magnetic-field-induced strain in Ni-Co-Mn-In metamagnetic shape memory alloys [J]. Acta Mater., 2012, 60: 6883
25
Kainuma R, Imano Y, Ito W, et al. Metamagnetic shape memory effect in a Heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy [J]. Appl. Phys. Lett., 2006, 88: 192513
26
Yu S Y, Ma L, Liu G D, et al. Magnetic field-induced martensitic transformation and large magnetoresistance in NiCoMnSb alloys [J]. Appl. Phys. Lett., 2007, 90: 242501
27
Li Z, Jing C, Zhang H L, et al. A considerable metamagnetic shape memory effect without any prestrain in Ni46Cu4Mn38Sn12 Heusler alloy [J]. J. Appl. Phys., 2009, 106: 083908
28
Salazar Mejía C, Küchler R, Nayak A K, et al. Uniaxial-stress tuned large magnetic-shape-memory effect in Ni-Co-Mn-Sb Heusler alloys [J]. Appl. Phys. Lett., 2017, 110: 071901
29
Krenke T, Duman E, Acet M, et al. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys [J]. Nat. Mater., 2005, 4: 450
30
Liu J, Gottschall T, Skokov K P, et al. Giant magnetocaloric effect driven by structural transitions [J]. Nat. Mater., 2012, 11: 620
31
Pasquale M, Sasso C P, Lewis L H, et al. Magnetostructural transition and magnetocaloric effect in Ni55Mn20Ga25 single crystals [J]. Phys. Rev., 2005, 72B: 094435
32
Kihara T, Xu X, Ito W, et al. Direct measurements of inverse magnetocaloric effects in metamagnetic shape-memory alloy NiCoMnIn [J]. Phys. Rev., 2014, 90B: 214409
33
Mañosa L, González-Alonso D, Planes A, et al. Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy [J]. Nat. Mater., 2010, 9: 478
34
Stern-Taulats E, Planes A, Lloveras P, et al. Tailoring barocaloric and magnetocaloric properties in low-hysteresis magnetic shape memory alloys [J]. Acta Mater., 2015, 96: 324
35
Yu S Y, Liu Z H, Liu G D, et al. Large magnetoresistance in single-crystalline Ni50Mn50 - xInx alloys (x = 14-16) upon martensitic transformation [J]. Appl. Phys. Lett., 2006, 89: 162503
36
Li Z B, Hu W, Chen F H, et al. Large magnetoresistance in a directionally solidified Ni44.5Co5.1Mn37.1In13.3 magnetic shape memory alloy [J]. J. Magn. Magn. Mater., 2018, 452: 249
37
Huang Y J, Hu Q D, Bruno N M, et al. Giant elastocaloric effect in directionally solidified Ni-Mn-In magnetic shape memory alloy [J]. Scr. Mater., 2015, 105: 42
38
Zhao D W, Liu J, Chen X, et al. Giant caloric effect of low-hysteresis metamagnetic shape memory alloys with exceptional cyclic functionality [J]. Acta Mater., 2017, 133: 217
39
Cong D Y, Xiong W X, Planes A, et al. Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys [J]. Phys. Rev. Lett., 2019, 122: 255703
40
Gràcia-Condal A, Gottschall T, Pfeuffer L, et al. Multicaloric effects in metamagnetic Heusler Ni-Mn-In under uniaxial stress and magnetic field [J]. Appl. Phys. Rev., 2020, 7: 041406
41
Gottschall T, Gràcia-Condal A, Fries M, et al. A multicaloric cooling cycle that exploits thermal hysteresis [J]. Nat. Mater., 2018, 17: 929
42
Liang F X, Hao J Z, Shen F R, et al. Experimental study on coupled caloric effect driven by dual fields in metamagnetic Heusler alloy Ni50Mn35In15 [J]. APL Mater., 2019, 7: 051102
43
Pons J, Chernenko V A, Santamarta R, et al. Crystal structure of martensitic phases in Ni-Mn-Ga shape memory alloys [J]. Acta Mater., 2000, 48: 3027
44
Wang Y D, Ren Y, Huang E W, et al. Direct evidence on magnetic-field-induced phase transition in a NiCoMnIn ferromagnetic shape memory alloy under a stress field [J]. Appl. Phys. Lett., 2007, 90: 101917
45
Ito W, Imano Y, Kainuma R, et al. Martensitic and magnetic transformation behaviors in Heusler-type NiMnIn and NiCoMnIn metamagnetic shape memory alloys [J]. Metall. Mater. Trans., 2007, 38A: 759
46
Karaca H E, Karaman I, Basaran B, et al. Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys—A new actuation mechanism with large work output [J]. Adv. Funct. Mater., 2009, 19: 983
47
Yan H L, Zhang Y D, Xu N, et al. Crystal structure determination of incommensurate modulated martensite in Ni-Mn-In Heusler alloys [J]. Acta Mater., 2015, 88: 375
48
Prince E. International Tables for Crystallography Volume C: Mathematical, Physical and Chemical Tables [M]. 3rd Ed., Dordrecht: Springer, 2004: 907
49
Petříček V, Dušek M, Palatinus L. Crystallographic computing system JANA2006: General features [J]. Z. Kristallogr. Cryst. Mater., 2014, 229: 345
50
Yan H L, Zhang C Y, Zhang Y D, et al. Crystallographic insights into Ni-Co-Mn-In metamagnetic shape memory alloy [J]. J. Appl. Cryst., 2016, 49: 1585
51
Righi L, Albertini F, Villa E, et al. Crystal structure of 7M modulated Ni-Mn-Ga martensitic phase [J]. Acta Mater., 2008, 56: 4529
52
Kaufmann S, Rößler U K, Heczko O, et al. Adaptive modulations of martensites [J]. Phys. Rev. Lett., 2010, 104: 145702.
53
Li Z B, Zhang Y D, Esling C, et al. New approach to twin interfaces of modulated martensite [J]. J. Appl. Cryst., 2010, 43: 617
54
Li Z B, Zhang Y D, Esling C, et al. Evidence for a monoclinic incommensurate superstructure in modulated martensite [J]. Acta Mater., 2012, 60: 6982
55
Li Z B, Zhang Y D, Esling C, et al. Twin relationships of 5M modulated martensite in Ni-Mn-Ga alloy [J]. Acta Mater., 2011, 59: 3390
56
Bilby B A, Crocker A G. The theory of the crystallography of deformation twinning [J]. Proc. Roy. Soc. London, 1965, 288A: 240
57
Zhang Y D, Li Z B, Esling C, et al. A general method to determine twinning elements [J]. J. Appl. Cryst., 2010, 43: 1426
58
Christian J W, Mahajan S. Deformation twinning [J]. Prog. Mater. Sci., 1995, 39: 1
59
Cong D Y, Zhang Y D, Wang Y D, et al. Determination of microstructure and twinning relationship between martensitic variants in 53 at.%Ni-25 at.%Mn-22 at.%Ga ferromagnetic shape memory alloy [J]. J. Appl. Cryst., 2006, 39: 723
60
Yang B, Li Z B, Zhang Y D, et al. Microstructural features and orientation correlations of non-modulated martensite in Ni-Mn-Ga epitaxial thin films [J]. Acta Mater., 2013, 61: 6809
61
Lin C Q, Yan H L, Zhang Y D, et al. Crystal structure of modulated martensite and crystallographic correlations between martensite variants of Ni50Mn38Sn12 alloy [J]. J. Appl. Cryst., 2016, 49: 1276
62
Zhang C Y, Yan H L, Zhang Y D, et al. Crystal structure and crystallographic characteristics of martensite in Ni50Mn38Sb12 alloys [J]. J. Appl. Cryst., 2016, 49: 513
63
Li Z B, Zhang Y D, Esling C, et al. Determination of the orientation relationship between austenite and incommensurate 7M modulated martensite in Ni-Mn-Ga alloys [J]. Acta Mater., 2011, 59: 2762
64
Li Z B, Zhang Y D, Esling C, et al. Determination of the orientation relationship between austenite and 5M modulated martensite in Ni-Mn-Ga alloys [J]. J. Appl. Cryst., 2011, 44: 1222
65
Zhang C Y, Zhang Y D, Esling C, et al. Crystallographic features of the martensitic transformation and their impact on variant organization in the intermetallic compound Ni50Mn38Sb12 studied by SEM/EBSD [J]. IUCrJ, 2017, 4: 700
66
Li Z B, Yang B, Zhang Y D, et al. Crystallographic insights into diamond-shaped 7M martensite in Ni-Mn-Ga ferromagnetic shape-memory alloys [J]. IUCrJ, 2019, 6: 909
67
Li Z B, Xu N, Zhang Y D, et al. Composition-dependent ground state of martensite in Ni-Mn-Ga alloys [J]. Acta Mater., 2013, 61: 3858
68
Li Z B, Yang B, Zhang Y D, et al. Crystallographic insights into the intermartensitic transformation in Ni-Mn-Ga alloys [J]. Acta Mater., 2014, 74: 9
69
Zhang Y D, Esling C, Zhao X, et al. Indirect two-trace method to determine a faceted low-energy interface between two crystallographically correlated crystals [J]. J. Appl. Cryst., 2007, 40: 436
70
Seguí C, Chernenko V A, Pons J, et al. Low temperature-induced intermartensitic phase transformations in Ni-Mn-Ga single crystal [J]. Acta Mater., 2005, 53: 111
71
Chernenko V A, Seguí C, Cesari E, et al. Sequence of martensitic transformations in Ni-Mn-Ga alloys [J]. Phys. Rev., 1998, 57B: 2659
72
Cong D Y, Zhang Y D, Esling C, et al. Microstructural and crystallographic characteristics of interpenetrating and non-interpenetrating multiply twinned nanostructure in a Ni-Mn-Ga ferromagnetic shape memory alloy [J]. Acta Mater., 2011, 59: 7070
73
Li Z B, Li Z Z, Yang B, et al. Crystallographic correlation between 5M and 7M martensite in an Ni-Mn-Ga alloy [J]. J. Appl. Cryst., 2016, 49: 507
74
Li Z B, Zhang Y D, Esling C, et al. In-situ neutron diffraction study of martensitic variant redistribution in polycrystalline Ni-Mn-Ga alloy under cyclic thermo-mechanical treatment [J]. Appl. Phys. Lett., 2014, 105: 021907
75
Li Z B, Zou N F, Yang B, et al. Effect of compressive load on the martensitic transformation from austenite to 5M martensite in a polycrystalline Ni-Mn-Ga alloy studied by in-situ neutron diffraction [J]. J. Alloys Compd., 2016, 666: 1
76
Li Z B, Li D, Chen J X, et al. Crossing twin of Ni-Mn-Ga 7M martensite induced by thermo-mechanical treatment [J]. Acta Mater., 2020, 185: 28
77
Zou N F, Li Z B, Zhang Y D, et al. Deformation of Ni-Mn-Ga 7M modulated martensite through detwinning/twinning and forward/reverse intermartensitic transformation studied by in-situ neutron diffraction and interrupted in-situ EBSD [J]. Acta Mater., 2019, 174: 319
78
Zou N F, Li Z B, Zhang Y D, et al. Plastic deformation of Ni-Mn-Ga 7M modulated martensite by twinning & detwinning and intermartensitic transformation [J]. Int. J. Plast., 2018, 100: 1
79
Yan H L, Yang B, Zhang Y D, et al. Variant organization and mechanical detwinning of modulated martensite in Ni-Mn-In metamagnetic shape-memory alloys [J]. Acta Mater., 2016, 111: 75
80
Li Z Z, Li Z B, Yang B, et al. Over 2% magnetic-field-induced strain in a polycrystalline Ni50Mn28.5Ga21.5 alloy prepared by directional solidification [J]. Mater. Sci. Eng., 2020, A780: 139170
81
Gaitzsch U, Pötschke M, Roth S, et al. A 1% magnetostrain in polycrystalline 5M Ni-Mn-Ga [J]. Acta Mater., 2009, 57: 365
82
Li Z Z, Li Z B, Yang B, et al. Large low-field magnetocaloric effect in directionally solidified Ni55Mn18 + xGa27 - x (x = 0, 1, 2) alloys [J]. J. Magn. Magn. Mater., 2018, 445: 71
83
Li Z B, Zhang Y D, Sánchez-Valdés C F, et al. Giant magnetocaloric effect in melt-spun Ni-Mn-Ga ribbons with magneto-multistructural transformation [J]. Appl. Phys. Lett., 2014, 104: 044101
84
Li Z B, Llamazares J L S, Sánchez-Valdés C F, et al. Microstructure and magnetocaloric effect of melt-spun Ni52Mn26Ga22 ribbon [J]. Appl. Phys. Lett., 2012, 100: 174102
85
Li Z B, Li Z Z, Yang B, et al. Large low-field magnetocaloric effect in a directionally solidified Ni50Mn18Cu7Ga25 alloy [J]. Intermetallics, 2017, 88: 31
86
Li Z B, Jiang Y W, Li Z Z, et al. Texture inheritance from austenite to 7M martensite in Ni-Mn-Ga melt-spun ribbons [J]. Results Phys., 2016, 6: 428
87
Li Z B, Yang B, Zou N F, et al. Crystallographic characterization on polycrystalline Ni-Mn-Ga alloys with strong preferred orientation [J]. Materials, 2017, 10: 463
88
Li Z B, Zou N F, Sánchez-Valdés C F, et al. Thermal and magnetic field-induced martensitic transformation in Ni50Mn25 - xGa25Cux (0 ≤ x ≤ 7) melt-spun ribbons [J]. J. Phys., 2016, 49D: 025002
89
Zou N F, Li Z B, Zhang Y D, et al. Transformation process dependent magnetocaloric properties of annealed Ni50Mn18Cu7Ga25 ribbons [J]. J. Alloys Compd., 2017, 698: 731
90
Li Z B, Li Z Z, Yang B, et al. Large low-field magnetocaloric effect in a directionally solidified Ni50Mn18Cu7Ga25 alloy [J]. Intermetallics, 2017, 88: 31
91
Li Z Z, Li Z B, Yang B, et al. Giant low-field magnetocaloric effect in a textured Ni45.3Co5.1Mn36.1In13.5 alloy [J]. Scr. Mater., 2018, 151: 61
92
Li Z B, Jiang Y W, Li Z Z, et al. Phase transition and magnetocaloric properties of Mn50Ni42 - xCoxSn8 (0 ≤ x ≤ 10) melt-spun ribbons [J]. IUCrJ, 2018, 5: 54
93
Li Z B, Li Z Z, Yang J J, et al. Large room temperature adiabatic temperature variation in a Ni40Co8Mn42Sn10 polycrystalline alloy [J]. Intermetallics, 2018, 100: 57
94
Wang L M, Li Z B, Yang J J, et al. Large refrigeration capacity in a Ni48Co1Mn37In14 polycrystalline alloy with low thermal hysteresis [J]. Intermetallics, 2020, 125: 106888
95
Li Z B, Yang J J, Li D, et al. Tuning the reversible magnetocaloric effect in Ni-Mn-In-based alloys through Co and Cu Co-doping [J]. Adv. Electron. Mater., 2019, 5: 1800845
96
Li Z B, Dong S Y, Li Z Z, et al. Giant low-field magnetocaloric effect in Si alloyed Ni-Co-Mn-In alloys [J]. Scr. Mater., 2019, 159: 113
97
Yang Z, Cong D Y, Sun X M, et al. Enhanced cyclability of elastocaloric effect in boron-microalloyed Ni-Mn-In magnetic shape memory alloys [J]. Acta Mater., 2017, 127: 33
98
Wang J M, Yu Q, Xu K Y, et al. Large room-temperature elastocaloric effect of Ni57Mn18Ga21In4 alloy undergoing a magnetostructural coupling transition [J]. Scr. Mater., 2017, 130: 148
99
Li D, Li Z B, Yang J J, et al. Large elastocaloric effect driven by stress-induced two-step structural transformation in a directionally solidified Ni55Mn18Ga27 alloy [J]. Scr. Mater., 2019, 163: 116
100
Li D, Zhang X L, Zhang G Y, et al. Enhancing the elastocaloric effect in Ni-Mn-Ga alloys through the coupling of magnetic transition and two-step structural transformation [J]. Appl. Phys. Lett., 2021, 118: 213903
101
Kustov S, Corró M L, Pons J, et al. Entropy change and effect of magnetic field on martensitic transformation in a metamagnetic Ni-Co-Mn-In shape memory alloy [J]. Appl. Phys. Lett., 2009, 94: 191901
102
Recarte V, Pérez-Landazábal J I, Sánchez-Alarcos V, et al. Entropy change linked to the martensitic transformation in metamagnetic shape memory alloys [J]. Acta Mater., 2012, 60: 3168
103
Pérez-Sierra A M, Bruno N M, Pons J, et al. Atomic order and martensitic transformation entropy change in Ni-Co-Mn-In metamagnetic shape memory alloys [J]. Scr. Mater., 2016, 110: 61
104
Li Z Z, Li Z B, Li D, et al. Influence of austenite ferromagnetism on the elastocaloric effect in a Ni44.9Co4.9Mn36.9In13.3 metamagnetic shape memory alloy [J]. Appl. Phys. Lett., 2019, 115: 083903
105
Li Z Z, Li Z B, Li D, et al. Achieving a broad refrigeration temperature region through the combination of successive caloric effects in a multiferroic Ni50Mn35In15 alloy [J]. Acta Mater., 2020, 192: 52
106
Zhang G Y, Li Z B, Yang J J, et al. Giant elastocaloric effect in a Mn-rich Ni44Mn46Sn10 directionally solidified alloy [J]. Appl. Phys. Lett., 2020, 116: 023902
107
Zhang G Y, Li D, Liu C, et al. Giant low-field actuated caloric effects in a textured Ni43Mn47Sn10 alloy [J]. Scr. Mater., 2021, 201: 113947
108
Li Z Z, Li Z B, Yang J J, et al. Large elastocaloric effect in a polycrystalline Ni45.7Co4.2Mn37.3Sb12.8 alloy with low transformation strain [J]. Scr. Mater., 2019, 162: 486
109
Huang X M, Zhao Y, Yan H L, et al. A multielement alloying strategy to improve elastocaloric and mechanical properties in Ni-Mn-based alloys via copper and boron [J]. Scr. Mater., 2020, 185: 94