Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (7): 789-796    DOI: 10.3724/SP.J.1037.2011.00717
论文 Current Issue | Archive | Adv Search |
XU Gang, CAI Linling, FENG Liu,  ZHOU Bangxin, LIU Wenqing, WANG Junan
1) Institute of Materials, Shanghai University, Shanghai 200072
2) Laboratory for Microstructures, Shanghai University, Shanghai 200444
Download:  PDF(3189KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The segregation of impurity or solute atoms to grain boundaries as well as phase interfaces can either improve or degrade the chemical, physical and mechanical properties of alloys. This phenomenon has been studied widely for iron based alloys, and the analysis method by an atom probe tomography (APT) is a powerful tool for better understanding this problem. The resulting composition changes of grain boundaries and phase interfaces, as well as the precipitation of Cu-rich nanophases, are frequently associated with the phenomenon of embrittlement in ferritic reactor pressure vessel (RPV) steels. The present work was carried out to study the segregation of impurity or solute atoms to grain boundaries as well as phase interfaces in a RPV model steel with higher content of Cu (0.53%, atomic fraction) than commercially available one. The RPV model steel was prepared by vacuum induction melting. The specimens were further heat treated by water quenching at 880 ℃ for 30 min and tempering at 660 ℃ for 10 h, and finally aged at 370 ℃ for 3000 h. The results show that the segregation amount of Ni, Mn, Si, C, P and Mo atoms on grain boundaries are varied. The sequence of segregation tendency for different atoms from strong to weak is C, P, Mo, Si, Mn and Ni, whilst Cu atoms were clearly depleted at the grain boundaries. Si atoms also segregate to the grain boundaries, but it depends on the characteristic of the grain boundaries. The C segregation range at grain boundaries is the widest. According to the width of the composition profiles at the half intensity for different atoms at the grain boundaries, the segregation range of C atoms is 1.5 times wider than that of Mn, Ni and Mo atoms. Furthermore, Ni and Mn atoms evidently segregate to the interfaces between the Cu-rich phase and the α-Fe matrix, while C, P, Mo, Si atoms prefer to segregate towards the α-Fe matrix near the interfaces, but their segregation amount at the interfaces of Cu-rich phase and the α-Fe matrix is less than that at the grain boundaries.
Key words:  reactor pressure vessel model steel      atom probe tomograghy      grain boundary      phase boundary      segregation     
Received:  17 November 2011     



;National Natural Science Foundation of China

Cite this article: 


URL:     OR

[1] Takaki S, Fujioka M, Aihara S, Nagataki Y, Yamashita T, Sano N, Adachi Y, Nomura M, Yaguchi H. Mater Trans, 2004; 45: 2239

[2] Garc´?a–Mazar´?o M, Lancha A M, Hern´andez–Mayoral M. J Nucl Mater, 2007; 360: 293

[3] Laha K, Kyono J, Kishimoto S, Shinya N. Scr Mater, 2005; 52: 675

[4] Bowen P, Hippsley C A, Knott J F. Acta Metall, 1984; 32: 637

[5] Bulloch J H. Int J Pres Ves Pip, 1988; 33: 197

[6] Wang K, Xu T D, Shao C, Yang C. J Iron Steel Res Int, 2011; 18: 61

[7] Wei W, Grabke H J. Corros Sci, 1986; 26: 223

[8] Atrens A, Wang J Q, Stiller K, Andren H O. Corros Sci, 2006; 48: 79

[9] Heo N H, Jung Y C, Lee J K, Kim K T. Scr Mater, 2008; 59: 1200

[10] Lemarchand D, Cadel E, Chambreland S, Blavette D. Philos Mag, 2002; 82A: 1651

[11] Kolli R P, Seidman D N. Acta Mater, 2008; 56: 2073

[12] Wu J, Song S H, Weng L Q, Xi T H, Yuan Z X. Mater Charact, 2008; 59: 261

[13] Khalid F A. Scr Mater, 2001; 44: 797

[14] Hudson D, Smith G D W. Scr Mater, 2009; 61: 411

[15] Sha G, Yao L, Liao X Z, Ringer S P, Duan Z C, Langdon T G. Ultramicroscopy, 2011; 111: 500

[16] Isheim D, Kolli R P, Fine M E, Seidman D N. Scr Mater, 2006; 55: 35

[17] Etienne A, Radiguet B, Cunningham N J, Odette G R, Valiev R, Pareige P. Ultramicroscopy, 2011; 111: 659

[18] Li H, Xia S, Zhou B X, Liu W Q. Mater Charact, 2012; 66: 68

[19] Toyama T, Nagai Y, Tang Z, Hasegawa M, Almazouzi A, van Walle E, Gerard R. Acta Mater, 2007; 55: 6852

[20] Bischler P J E, Wild R K. In: Gelles D S, Nanstad R K, Kumar A S, Little E A eds., Effects of Radiation on Materials: 17th International Symposium, ASTM STP 1270, West Conshohocken, PA: American Society for Testing and Materials, 1996: 260

[21] Miller M K. Atom Probe Tomography: Analysis at the Atomic Level. New York: Kliwer Academic/Plenum Publishers, 2000: 25

[22] Yong Q L. Secondary Phase in Steel. Beijing: Metallurgical Industry Press, 2006: 127

(雍其龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 127)

[23] Hornbogen E, Glenn R C. Trans Metall Soc AIME, 1960; 218: 1064

[24] Xu G, Chu D F, Cai L L, Zhou B X, Wang W, Peng J C. Acta Metall Sin, 2011; 7: 905

(徐刚, 楚大锋, 蔡琳玲, 周邦新, 王伟, 彭剑超. 金属学报, 2011; 47: 905)

[25] Vurpillot F, Cerezo A, Blavette D, Larson D J. Microsc Microanal, 2004; 10: 384

[26] Blavette D, Duval P, Letellier L, Guttmann M. Acta Mater, 1996; 44: 4995

[27] Faulkner R G, Jones R B, Zheng L, Flewett P E J. Philos Mag, 2005; 85: 2065

[28] Suzuki S, Obata M, Abiko K, Kimura H. Scr Metall, 1983; 17: 1325

[29] Cerezo A, Clifton P H, Lozano–Perez S, Panayi P, Sha G, Smith G D W. Microsc Microanal, 2007; 13: 408

[30] Jiao Z, Was G S. Acta Mater, 2011; 59: 4467

[31] Chu D F, Xu G, Wang W, Peng J C, Wang J A, Zhou B X. Acta Metall Sin, 2011; 47: 269

(楚大锋, 徐刚, 王伟, 彭剑超, 王均安, 周邦新. 金属学报, 2011; 47: 269)
[1] LI Shiju, LI Yang, CHEN Jianqiang, LI Zhonghao, XU Guangming, LI Yong, WANG Zhaodong, WANG Guodong. Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field[J]. 金属学报, 2020, 56(6): 831-839.
[2] LI Gen, LAN Peng, ZHANG Jiaquan. Solidification Structure Refinement in TWIP Steel by Ce Inoculation[J]. 金属学报, 2020, 56(5): 704-714.
[3] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[4] YANG Ke,LIANG Ye,YAN Wei,SHAN Yiyin. Preferential Distribution of Boron and its Effect on Microstructure and Mechanical Properties of (9~12)%Cr Martensitic Heat Resistant Steels[J]. 金属学报, 2020, 56(1): 53-65.
[5] LIU Yang,WANG Lei,SONG Xiu,LIANG Taosha. Microstructure and High-Temperature Deformation Behavior of Dissimilar Superalloy Welded Joint of DD407/IN718[J]. 金属学报, 2019, 55(9): 1221-1230.
[6] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[7] Chunlei WU,Dewei LI,Xiaowei ZHU,Qiang WANG. Influence of Electromagnetic Swirling Flow in Nozzle on Solidification Structure and Macrosegregation of Continuous Casting Square Billet[J]. 金属学报, 2019, 55(7): 875-884.
[8] Bo LI,Zhonghua ZHANG,Huasong LIU,Ming LUO,Peng LAN,Haiyan TANG,Jiaquan ZHANG. Characteristics and Evolution of the Spot Segregations and Banded Defects in High Strength Corrosion Resistant Tube Steel[J]. 金属学报, 2019, 55(6): 762-772.
[9] Dejian SUN,Lin LIU,Taiwen HUANG,Jiachen ZHANG,Kaili CAO,Jun ZHANG,Haijun SU,Hengzhi FU. Dendrite Growth and Orientation Evolution in the Platform of Simplified Turbine Blade for Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(5): 619-626.
[10] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Effect of Annealing on Microstructure of Thermally Aged 308L Stainless Steel Weld Metal[J]. 金属学报, 2019, 55(5): 555-565.
[11] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[12] XIE Guang, ZHANG Shaohua, ZHENG Wei, ZHANG Gong, SHEN Jian, LU Yuzhang, HAO Hongquan, WANG Li, LOU Langhong, ZHANG Jian. Formation and Evolution of Low Angle Grain Boundary in Large-Scale Single Crystal Superalloy Blade[J]. 金属学报, 2019, 55(12): 1527-1536.
[13] ZHANG Min,JIA Fang,CHENG Kangkang,LI Jie,XU Shuai,TONG Xiongwei. Influence of Quenching and Tempering on Microstructure and Properties of Welded Joints of G520 Martensitic Steel[J]. 金属学报, 2019, 55(11): 1379-1387.
[14] Xiting ZHONG, Lei WANG, Feng LIU. Study on Formation Mechanism of Necklace Structure in Discontinuous Dynamic Recrystallization of Incoloy 028[J]. 金属学报, 2018, 54(7): 969-980.
[15] Tingguang LIU, Shuang XIA, Qin BAI, Bangxin ZHOU. Morphological Characteristics and Size Distributions of Three-Dimensional Grains and Grain Boundaries in 316L Stainless Steel[J]. 金属学报, 2018, 54(6): 868-876.
No Suggested Reading articles found!