Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (10): 1365-1375    DOI: 10.11900/0412.1961.2021.00511
Research paper Current Issue | Archive | Adv Search |
Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips
YU Shaoxia, WANG Qi, DENG Xiangtao(), WANG Zhaodong()
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Cite this article: 

YU Shaoxia, WANG Qi, DENG Xiangtao, WANG Zhaodong. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips. Acta Metall Sin, 2023, 59(10): 1365-1375.

Download:  HTML  PDF(6247KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nickel-based superalloys have gathered much attention recently due to their excellent performance at high temperatures and corrosion resistance. Furthermore, their advancement is a crucial indicator to determine the development level of metallic materials. Thus, rapid development in microsystem technology which focuses on development of lightweight and miniaturized materials is required. Moreover, the demand for micromaterials such as ultra-thin strips is also growing, leading to higher demand and better performance requirements. China's production of ultra-thin strips started relatively late and nickel-based ultra-thin strips rely on imports. Strengthening the production research of nickel-based ultra-thin strips, meeting the needs of aerospace and emerging microsystems, and removing import dependence are key issues that need to be addressed in future. The accurate acquisition of microstructure variations and strip properties after thinning and heat treatment is crucial in controlling the forming accuracy and preventing defects. Remarkably, the GH3600 nickel-based superalloy with thicknesses from 0.5 mm with polycrystalline layer to 0.07 mm with local single crystal layer was obtained by cold rolling and annealing. The effects of cold rolling reduction and annealing temperature on the microstructure and mechanical properties of the superalloy were investigated, and changes in the microstructure and mechanical properties caused by thickness variation were analyzed. The results reveal that with the increase of cold rolling reduction, the austenite grains in the alloy are elongated along the rolling direction, and the annealing twins gradually disappear. A complete recrystallization microstructure was obtained after further annealing, and grain size increased with the annealing temperature while the strength and hardness decreased. After annealing at the same temperature, the material's yield strength increases with the reduction and refinement of the recrystallized grain. However, as the strip thickness decreases, the grain layer decreases along the direction of the strip thickness. After annealing at 1000 and 1050oC, abnormal coarse grains appear in 0.07 mm thick strips, leading to the appearance of single grains in some areas along the thickness direction of the ultra-thin strips. The tensile strength and elongation of the strip are “smaller and weaker” with the decrease of strip thickness/average grain size ratio due to the size effect. The comparative analysis demonstrated that the average grain size of GH3600 ultra-thin strips annealed at 800-900oC is approximately 7 μm, the local orientation difference is approximately 0.5, the yield and tensile strengths could reach up to 400 and 600 MPa, and the elongation is approximately 13%, respectively.

Key words:  nickel-based superalloy      ultra-thin strip      cold rolling      annealing      size effect      mechanical property     
Received:  29 November 2021     
ZTFLH:  TG132.3  
Fund: National Natural Science Foundation of China(51874089)
Corresponding Authors:  DENG Xiangtao, associate professor, Tel: (024)83686415, E-mail: dengxt@mail.neu.edu.cn;
WANG Zhaodong, professor, Tel: (024)83686426, E-mail: zhdwang@mail.neu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00511     OR     https://www.ams.org.cn/EN/Y2023/V59/I10/1365

Fig.1  OM image of 0.5 mm thickness GH3600 nickel-based superalloy strip (Arrow A shows the twin terminate inside grain, arrow B shows the twin throughout the grain)
Fig.2  OM images of GH3600 nickel-based superalloy cold rolled strips with thicknesses of 0.25 mm (a), 0.125 mm (b), and 0.07 mm (c) (RD—rolling direction, ND—rolling direction)
Fig.3  Hardness curves of GH3600 nickel-based superalloy cold rolled strips with different thicknesses
Fig.4  OM images of GH3600 nickel-based superalloy strips with different thicknesses after annealing at different temper-atures
(a1) 800oC, 0.25 mm (a2) 900oC, 0.25 mm (a3) 1000oC, 0.25 mm (a4) 1050oC, 0.25 mm
(b1) 800oC, 0.125 mm (b2) 900oC, 0.125 mm (b3) 1000oC, 0.125 mm (b4) 1050oC, 0.125 mm
(c1) 800oC, 0.07 mm (c2) 900oC, 0.07 mm (c3) 1000oC, 0.07 mm (c4) 1050oC, 0.07 mm
Fig.5  Grain orientation spread (GOS) diagrams of GH3600 nickel-based superalloy strips with different thicknesses after annealing at 800oC
(a) 0.25 mm (b) 0.125 mm (c) 0.07 mm
Fig.6  Bound contrast (BC) + grain boundry (GB) overlap diagrams of GH3600 nickel-based superalloys strips with different thicknesses treated at different annealing temperatures (High angle grain boundaries are shown in red lines, twin boundaries are shown in green lines, and the low angle grain boundaries are shown in blue lines)
(a) 800oC, 0.25 mm (b) 800oC, 0.125 mm (c) 800oC, 0.07 mm
(d) 1050oC, 0.25 mm (e) 1050oC, 0.125 mm (f) 1050oC, 0.07 mm
Fig.7  Inverse pole figures (IPFs) of GH3600 nickel-based superalloys strips with different thicknesses treated at different annealing temperatures (TD—transverse direction, numbers at top right corner show the maximum pole densities)
(a) 800oC, 0.25 mm (b) 800oC, 0.125 mm (c) 800oC, 0.07 mm
(d) 1050oC, 0.25 mm (e) 1050oC, 0.125 mm (f) 1050oC, 0.07 mm
Fig.8  Engineering stress-strain curves of GH3600 nickel-based superalloy strips with different thicknesses at different annealing temperatures
(a) 0.25 mm (b) 0.125 mm (c) 0.07 mm
Thickness / mm800oC900oC1000oC1050oC
0.2539.538.437.138.4
0.12521.325.717.820.7
0.0713.312.310.25.4
Table 1  Elongations of GH3600 nickel-based superalloy strips with different thicknesses at different annealing temperatures
Fig.9  Low (a1-d1) and locally high (a2-d2) SEM images showing tensile fracture morphologies of 0.125 mm thick GH3600 nickel-based superalloy strips after annealing at 800oC (a1, a2), 900oC (b1, b2), 1000oC (c1, c2), and 1050oC (d1, d2)
Fig.10  Low (a1-d1) and locally high (a2-d2) SEM images showing tensile fracture morphologies of 0.07 mm thick GH3600 nickel-based superalloy strips after annealing at 800oC (a1, a2), 900oC (b1, b2), 1000oC (c1, c2), and 1050oC (d1, d2)
Fig.11  Grain size distributions of GH3600 nickel-based superalloys strips with different thicknesses treated at different annealing temperatures (D—average grain size)
(a) 0.25 mm (b) 0.125 mm (c) 0.07 mm
T / DYield strengthTensile strengthElongation
MPaMPa%
9.143063613.3
3.536656410.2
1.93444385.4
Table 2  Variations of yield strength, tensile strength, and elongation of 0.07 mm thick GH3600 nickel-based superalloy strips with strip thickness/average grain size (T / D)
1 Zhang C X, Chen M H, Lei X J, et al. Research on forming limits of superalloy GH600 sheet [J]. J. Aeronaut. Mater., 2015, 35(6): 35
张成祥, 陈明和, 雷晓晶 等. GH600合金薄板成形极限研究 [J]. 航空材料学报, 2015, 35(6): 35
2 Ma F M, Wang H. Overview of microsystem technology and its development [J]. Electron. Compon. Mater., 2019, 38(6): 12
马福民, 王 惠. 微系统技术现状及发展综述 [J]. 电子元件与材料, 2019, 38(6): 12
3 Cui R Q, Wu F J, Li Z, et al. Development of MAV configurations and key techniques [J]. Mech. Eng. Autom., 2012, (1): 197
崔瑞强, 吴伏家, 李 震 等. 微型飞行器结构的发展及关键技术 [J]. 机械工程与自动化, 2012, (1): 197
4 Liu X. Study on the theory of producible rolling thickness and the buckling deformation of oblique cross wave in ultra-thin strip rolling [D]. Qinhuangdao: Yanshan University, 2020
刘 晓. 极薄带材适轧厚度理论及斜向交叉浪形屈曲变形研究 [D]. 秦皇岛: 燕山大学, 2020
5 Chen W L. Technology of copper foil production by electrodeposition [J]. Plat. Flnish., 1989, 11(1): 24
陈文亮. 电解沉积法生产铜箔的工艺技术 [J]. 电镀与精饰, 1989, 11(1): 24
6 Zhang P, Su X L, Tang X Q, et al. Preparation of TiN films by magnetron sputtering method and evaluation of their properties [J]. Mater. Prot., 2020, 53(9): 76
张 朋, 苏晓磊, 唐显琴 等. 磁控溅射法制备TiN薄膜及其性能研究 [J]. 材料保护, 2020, 53(9): 76
7 He C A, Wang Q G, Qu Z M, et al. Optimization and application of vanadium dioxide thin films by using magnetron sputtering method [J]. J. Mater. Sci. Eng., 2020, 38: 629
何长安, 王庆国, 曲兆明 等. 基于磁控溅射法的二氧化钒薄膜制备技术优化及应用 [J]. 材料科学与工程学报, 2020, 38: 629
8 Cao J, Wang Z, Murotani T, et al. Effect of process of polycrystalline silicon thin films prepared by vacuum evaporation on organization and performance [J]. Surf. Technol., 2011, 40(2): 83
曹 健, 王 宙, 室谷贵之 等. 真空蒸镀多晶硅薄膜工艺对其组织和性能的影响 [J]. 表面技术, 2011, 40(2): 83
9 Zhang C H, Xue S B, Xiao G Z, et al. Research status of micron rare metal foil [J]. Mater. Rep., 2020, 34: 13139
张聪惠, 薛少博, 肖桂枝 等. 微米级稀有金属箔材研究现状 [J]. 材料导报, 2020, 34: 13139
10 Huo H X, Sun Z D, Liu P C, et al. Study on manufacturing process for paper-thin steel strip of grain oriented silicon steel with thickness of 0.08 mm for medium frequency equipment [J]. Sci. Technol. Baotou Steel, 2021, 47(1): 50
霍慧贤, 孙振东, 刘鹏程 等. 0.08 mm厚中频用取向硅钢极薄带制作工艺研究 [J]. 包钢科技, 2021, 47(1): 50
11 Bai F M, Yin L B, Liu Y H, et al. Preparation and microstructure properties of low oxygen high-purity titanium metal foil [J]. J. Anhui Univ. Technol. (Nat. Sci.), 2020, 37: 309
白凤梅, 尹理波, 刘云昊 等. 低氧高纯钛极薄带的制备及其组织性能 [J]. 安徽工业大学学报(自然科学版), 2020, 37: 309
12 Yu Q B, Liu X H, Sun Y, et al. Combination forming rolling of metal aluminum at room temperature [J]. Sci. Sin. (Technol.), 2019, 49: 411
于庆波, 刘相华, 孙 莹 等. 室温下金属铝的组合成形轧制 [J]. 中国科学: 技术科学, 2019, 49: 411
13 Dong X H, Wang Q, Zhang H M, et al. Research progress of size effect in micro-forming [J]. Sci. Sin. (Technol.), 2013, 43: 115
董湘怀, 王 倩, 章海明 等. 微成形中尺寸效应研究的进展 [J]. 中国科学: 技术科学, 2013, 43: 115
14 Tang D L, Liu X H, Song M. Micro size effect of commercial pure aluminum rolled at room and cryogenic temperature [J]. Trans. Mater. Heat Treat., 2015, 36(2): 32
汤德林, 刘相华, 宋 孟. 工业纯铝在室温和深冷轧制条件下的微尺寸效应 [J]. 材料热处理学报, 2015, 36(2): 32
15 Zou G P, Wang D D, Wang R R, et al. Experimental study on size effect of Ni-Ti shape memory alloy [J]. Trans. Mater. Heat Treat., 2012, 33(12): 41
邹广平, 王丹丹, 王瑞瑞 等. 镍钛形状记忆合金尺寸效应的实验研究 [J]. 材料热处理学报, 2012, 33(12): 41
16 Sharon J A, Zhang Y, Mompiou F, et al. Discerning size effect strengthening in ultrafine-grained Mg thin films [J]. Scr. Mater., 2014, 75: 10
doi: 10.1016/j.scriptamat.2013.10.016
17 Yu Q B, Liu X H, Tang D L. Extreme extensibility of copper foil under compound forming conditions [J]. Sci. Rep., 2013, 3: 3556
doi: 10.1038/srep03556 pmid: 24352217
18 Michel J F, Picart P. Size effects on the constitutive behaviour for brass in sheet metal forming [J]. J. Mater. Process. Technol., 2003, 141: 439
doi: 10.1016/S0924-0136(03)00570-3
19 Lederer M, Gröger V, Khatibi G, et al. Size dependency of mechanical properties of high purity aluminium foils [J]. Mater. Sci. Eng., 2010, A527: 590
20 Pan J S, Tong J M, Tian M B. Foundation of Materials Science [M]. Beijing: Tsinghua University Press, 2011: 177
潘金生, 仝健民, 田民波. 材料科学基础 [M]. 北京: 清华大学出版社, 2011: 177
21 Huang Z H. Study on hot deformation behavior and recrystallization behavior evolution of hot pressing sintered NiAl [D]. Harbin: Harbin Institute of Technology, 2017
黄臻瀚. 粉末热压烧结NiAl高温变形及动态再结晶行为演化研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017
22 Li X F, Lei K, Song P, et al. Strengthening of aluminum alloy 2219 by thermo-mechanical treatment [J]. J. Mater. Eng. Perform., 2015, 24: 3905
doi: 10.1007/s11665-015-1665-0
23 Sun L, Xu Z T, Peng L F, et al. Effect of grain size on the ductile-brittle fracture behavior of commercially pure titanium sheet metals [J]. Mater. Sci. Eng., 2021, A822: 141630
24 Cui Z Q, Qin Y C. Metallogy and Heat Treatment [M]. 2nd Ed., Beijing: China Machine Press, 2011: 194
崔忠圻, 覃耀春. 金属学与热处理 [M]. 第 2版, 北京: 机械工业出版社, 2011: 194
25 Ma F, Zhang J M, Xu K W. Surface-energy-driven abnormal grain growth in Cu and Ag films [J]. Appl. Surf. Sci., 2005, 242: 55
doi: 10.1016/j.apsusc.2004.07.068
26 Li Z G. Evolution of annealing twin boundary and mechanical behavior in a nickel-iron based wrought alloy [D]. Shanghai: Shanghai Jiao Tong University, 2015
李志刚. 一种镍铁基变形高温合金中退火孪晶界的演变与力学行为 [D]. 上海: 上海交通大学, 2015
27 Wang G, Yin L M, Yao Z X, et al. Influence of solution treatment on microstructure and properties of Inconel600 alloy TIG welded joint [J]. Hot Work. Technol., 2017, 46(5): 221
王 刚, 尹立孟, 姚宗湘 等. 固溶处理对Inconel600合金TIG接头组织和性能的影响 [J]. 热加工工艺, 2017, 46(5): 221
28 Zhao X S, Liu Y, Kong C, et al. Research on thickness size effect of asymmetric rolled and annealed copper foils [J]. J. Plast. Eng., 2021, 28(5): 126
赵祥帅, 刘 粤, Kong C 等. 异步轧制与退火铜箔的厚度尺寸效应研究 [J]. 塑性工程学报, 2021, 28(5): 126
doi: 10.3969/j.issn.1007-2012.2021.05.014
29 Song M, Liu X H, Sun X K, et al. Preparation and size effect of single layer grain ultra-thin strip [J]. Trans. Mater. Heat Treat., 2016, 37(suppl.1) : 5
宋 孟, 刘相华, 孙祥坤 等. 单层晶金属极薄带的制备及其尺寸效应 [J]. 材料热处理学报, 2016, 37(): 5
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[5] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[11] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
No Suggested Reading articles found!