Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (2): 193-202    DOI: 10.11900/0412.1961.2019.00226
Current Issue | Archive | Adv Search |
Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate
CHENG Chao1,2,CHEN Zhiyong1,2(),QIN Xushan3,LIU Jianrong1,2,WANG Qingjiang1,2
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3. Unit 96901 of the Chinese People's Liberation Army, Beijing 100094, China
Download:  HTML  PDF(28271KB) 
Export:  BibTeX | EndNote (RIS)      

TA32 alloy is a new near α titanium alloy designed by optimizing the alloy elements ratio based on a series of elements Ti-Al-Sn-Zr-Mo-Si-Nb-Ta which has less β-stabilizing elements. This alloy has an excellent match of heat resistance and heat stability at 550 ℃, and good short-term mechanical properties at 600~650 ℃. TA32 titanium alloy thick plate can be applied to the key components in high temperature service of the hypersonic vehicle. Due to the low deformation degree of thick plate during rolling process, the heterogeneity of microstructure, texture and mechanical properties of the thick plate increases. In order to provide theoretical basis and experimental basis for the subsequent optimization of mechanical properties of TA32 titanium alloy thick plate, the microstructure, texture and mechanical properties of this alloy with a thickness of 60 mm are investigated in this work. Results show that the microstructure of the as-received material is mainly composed of lamellar α grains with few retained thin β layers, and the microstructure difference is not obvious from the surface to the center along the thickness direction of the plate no matter of the RD (rolling direction)-ND (normal direction) plane or the TD (transverse direction)-ND plane. Moreover, the rolling streamline can be obviously observed on the two planes. The morphology of α grains of the alloys presents either straight or wavy depending on their orientations with respect to the principal rolling directions. XRD results show that the as-received material has a typical T-type texture with c-axis of α phase approximately parallel to TD. At the same time, the <$10\bar{1}0$> poles are parallel to RD while <$10\bar{1}1$> poles present random distribution. As the c-axis gradually deviates from the TD of the surface to the center along the thickness direction of the plate, the Schmidt factors gradually increase, which is one of the main reasons for the gradual decrease of tensile strength; and the decrease of fraction of intragranular substructure from the surface to the center along the thickness direction is another important factor. The tensile properties have no obvious difference along the TD and RD at the same thickness position of the as-received material, but slightly worse along the ND. In addition, the influences of microstructure and texture on tensile properties are further clarified by adding two sets of heat treatment experiments (920 ℃, 30 min, AC+600 ℃, 5 h, AC; 950 ℃, 30 min, AC+600 ℃, 5 h, AC). The results show that the texture is the main factor affecting the tensile strength of TA32 titanium alloy plate at different positions under the condition of no obvious difference in microstructure. After double annealing, microstructure difference is the main factor affecting tensile strength.

Key words:  TA32 titanium alloy      thick plate      microstructure      texture      mechanical property     
Received:  08 July 2019     
ZTFLH:  TG146.23  
Corresponding Authors:  Zhiyong CHEN     E-mail:

Cite this article: 

CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate. Acta Metall Sin, 2020, 56(2): 193-202.

URL:     OR

Fig.1  Schematic of the test direction and position of the TA32 thick plate (RD—rolling direction, ND—normal direction, TD—transverse direction)
Fig.2  Microstructures of TA32 thick plate(a) RD-ND plane(b) TD-ND plane(c) RD-TD plane
Fig.3  The pole figure (PF) distributions of TA32 thick plate
DirectionPositionRp0.2 / MPaRm / MPaA / %Z / %
Table 1  Tensile properties at room temperature of TA32 thick plate
Fig.4  Macro (a~c) and fracture (d~f) morphologies of the fracture TA32 thick plate along RD (a, d), TD (b, e) and ND (c, f)
Fig.5  SEM images of fracture morphologies of the TA32 thick plate along RD (a), TD (b) and ND (c, d)
Fig.6  Microstructures of straight α colonies (a) and wavy α colonies (b) of TA32 thick plate
Fig.7  Relationship between morphology of α grains and their corresponding crystal orientation(a) inverse pole figure (IPF) map (b) PF of the corresponding dashed areas in Fig.7a
Fig.8  Schematics of fracturing of α colony along tensile direction (a) and vertical to tensile direction (b)
Fig.9  Schmidt factor (SF) distribution of two slip systems (prismatic and basal <a> slips) as a function of θ (θ—angle between c-axis and loading axis)
Fig.10  PF maps (a, d) and Schmidt factor maps (b, c, e, f) at the surface (a~c) and 1/2 thickness (d~f) (Insets in Figs.10b, c, e and f show the volume fraction distributions of SF)
Fig.11  Local misorientation (LM) results of TA32 titanium alloy thick plate at the surface (a) and 1/2 thickness (b) (Insets show the volume fraction distributions of LM)
Fig.12  Microstructures of TD-ND plane of TA32 thick plate after the heat treatment of 920 ℃ (a) and 950 ℃ (b)
Fig.13  The (0002) PF distributions of TA32 thick plate after heat treatment
Heat treatmentPositionRp0.2 / MPaRm / MPaA / %Z / %
920 ℃, 30 min, AC+Surface934100212.028.8
600 ℃, 5 h, AC1/492799613.023.0
950 ℃, 30 min, AC+Surface90897617.019.1
600 ℃, 5 h, AC1/491398514.024.5
Table 2  Room temperature tensile properties of TA32 thick plate after heat treatment
[1] Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mater. Sci. Eng., 1996, A213: 103
[2] Peters M, Kumpfert J, Ward C H, et al. Titanium alloys for aerospace applications [J]. Adv. Eng. Mater., 2003, 5: 419
[3] Polmear I, StJohn D, Nie J F, et al. Light Alloys: Metallurgy of the Light Metals [M]. 5th Ed., Amsterdam: Elsevier Ltd., 2017: 369
[4] Nourbakhsh S, O'Brien T D. Texture formation and transition in cold-rolled titanium [J]. Mater. Sci. Eng., 1988, 100: 109
[5] Ghosh A, Singh A, Gurao N P. Effect of rolling mode and annealing temperature on microstructure and texture of commercially pure-titanium [J]. Mater. Charact., 2017, 125: 83
[6] Li W Y. Study on texture and mechanical anisotropy of Ti60 high temperature titanium alloy plates [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2017
[6] (李文渊. Ti60高温钛合金板材织构及力学性能各向异性研究 [D]. 沈阳: 中国科学院金属研究所, 2017)
[7] Li W Y, Chen Z Y, Liu J R, et al. Effect of texture on anisotropy at 600 ℃ in a near-α titanium alloy Ti60 plate [J]. Mater. Sci. Eng., 2017, A688: 322
[8] Li W Y, Chen Z Y, Liu J R, et al. Rolling texture and its effect on tensile property of a near-α titanium alloy Ti60 plate [J]. J. Mater. Sci. Technol., 2019, 35: 790
[9] Lan C B, Wu Y, Guo L L, et al. Microstructure, texture evolution and mechanical properties of cold rolled Ti-32.5Nb-6.8Zr-2.7Sn biomedical beta titanium alloy [J]. J. Mater. Sci. Technol., 2018, 34: 788
[10] Ma Y, Du Z X, Cui X M, et al. Effect of cold rolling process on microstructure and mechanical properties of high strength β titanium alloy thin sheets [J]. Prog. Nat. Sci.Mater. Int., 2018, 28: 711
[11] Yu W X, Lv Y F, Li S K, et al. Mechanism of the anisotropy of yield ratio in TA5 titanium alloy plates [J]. Mater. Sci. Eng., 2015, A639: 314
[12] Ghosh A, Gurao N P. Effect of crystallographic texture on ratcheting response of commercially pure titanium [J]. Mater. Des., 2017, 115: 121
[13] Manda P, Samudrala R M, Mohan M K, et al. Microstructure, texture, and mechanical properties of β solution-treated and aged metastable β titanium alloy, Ti-5Al-5Mo-5V-3Cr [J]. Metall. Mater. Trans., 2017, 48A: 4539
[14] Li D, Liu Y Y, Wan X J. On the thermal stability of Ti alloys Ⅰ. The electron concentration rule for formation of Ti3X-phase [J]. Acta Metall. Sin., 1984, 20: 375
[14] (李 东, 刘羽寅, 万晓景. 钛合金热稳定性研究Ⅰ. Ti3X相形成的电子浓度规律 [J]. 金属学报, 1984, 20: 375)
[15] Li D, Liu Y Y. On the thermal stability of Ti alloys Ⅱ. The behaviour of transition elements in Ti3X-phase formation [J]. Acta Metall. Sin., 1984, 20: 384
[15] (李 东, 刘羽寅. 钛合金热稳定性研究Ⅱ. 过渡族元素在Ti3X相形成中的行为 [J]. 金属学报, 1984, 20: 384)
[16] Li D, Wan X J. On the thermal stability of Ti alloys Ⅲ. The criterion for thermal stability and its application [J]. Acta Metall. Sin., 1984, 20: 391
[16] (李 东, 万晓景. 钛合金热稳定性研究Ⅲ. 热稳定性判据及其应用 [J]. 金属学报, 1984, 20: 391)
[17] Wang Q J, Liu J R, Yang R. High temperature titanium alloys: Status and perspective [J]. J. Aeronaut. Mater., 2014, 34(4): 1
[17] (王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景 [J]. 航空材料学, 2014, 34(4): 1)
[18] Lütjering G, Williams J C. Titanium [M]. Heidelberg, Berlin: Springer, 2007:1
[19] Mao W M, Yang P, Chen L. Material Texture Analysis Principle and Measurement Technology [M]. Beijing: Metallurgical Industry Press, 2008: 47
[19] (毛卫民, 杨 平, 陈 冷. 材料织构分析原理与检测技术 [M]. 北京: 冶金工业出版社, 2008: 47)
[20] Roy S, Suwas S. Microstructure and texture evolution during sub-transus thermomechanical processing of Ti-6Al-4V-0.1B alloy: Part I. Hot rolling in (α+β) phase field [J]. Metall. Mater. Trans., 2013, 44A: 3303
[21] Roy S, Suwas S. Orientation dependent spheroidization response and macro-zone formation during sub β-transus processing of Ti-6Al-4V alloy [J]. Acta Mater., 2017, 134: 283
[22] Bieler T R, Semiatin S L. The origins of heterogeneous deformation during primary hot working of Ti-6Al-4V [J]. Int. J. Plast., 2002, 18: 1165
[23] Mironov S, Murzinova M, Zherebtsov S, et al. Microstructure evolution during warm working of Ti-6Al-4V with a colony-α microstructure [J]. Acta Mater., 2009, 57: 2470
[24] Yang Y, Huang A J, Xu F, et al. Room-temperature tensile plasticity of BT18y titanium alloy with equiaxed structure and fully lamellar structure [J]. Chin. J. Nonferrous Met., 2005, 15: 768
[24] (杨 义, 黄爱军, 徐 峰等. BT18y钛合金等轴组织与全片层组织的室温拉伸塑性 [J]. 中国有色金属学报, 2005, 15: 768)
[25] Won J W, Park K T, Hong S G, et al. Anisotropic yielding behavior of rolling textured high purity titanium [J]. Mater. Sci. Eng., 2015, A637: 215
[26] Won J W, Park C H, Hong S G, et al. Deformation anisotropy and associated mechanisms in rolling textured high purity titanium [J]. J. Alloys Compd., 2015, 651: 245
[27] Liu Z, Liu J R, Zhao Z B, et al. Microstructure and tensile property of TC4 alloy produced via electron beam rapid manufacturing [J]. Acta Metall. Sin., 2019, 55: 692
[27] (刘 征, 刘建荣, 赵子博等. 电子束快速成形制备TC4合金的组织和拉伸性能分析 [J]. 金属学报, 2019, 55: 692)
[28] Bridier F, Villechaise P, Mendez J. Analysis of the different slip systems activated by tension in a α/β titanium alloy in relation with local crystallographic orientation [J]. Acta Mater., 2005, 53: 555
[29] Zhao Z B, Wang Q J, Liu J R, et al. Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60 [J]. Acta Mater., 2017, 131: 305
[1] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[2] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[3] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[4] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[5] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[6] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[7] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[8] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[9] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[10] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[11] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[12] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[13] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[14] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[15] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
No Suggested Reading articles found!