Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (7): 775-781    DOI: 10.3724/SP.J.1037.2012.00189
论文 Current Issue | Archive | Adv Search |
EFFECTS OF Nb ON RECOVERY OF HOT-DEFORMED AUSTENITE
NIE Wenjin1, 2), SHANG Chengjia1), WU Shengjie1), SHI Peijian2), CHENG Junjie2), ZHANG Xiaobing2)
1) School of Material Science and Technology, University of Science and Technology Beijing, Beijing 100083
2) Chief engineer office, Jiangsu Sha Steel Group, Zhangjiagang 215625
Download:  PDF(4877KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Solute and precipitates of Nb can effectively affect stastic recrystallization and recoverry of austnite in steels during hot rolling process. However, more research is concerned about the role of Nb precipitation on the strain accumulation in finish rolling process, the solute drag effect of Nb is neglected comparing with precipitates. In this paper, the stress-relaxation curves of the low C high Mn steels with different Nb content were investigated by thermal simulation test, the evolution of dislocation and its interaction with Nb solute and precipitate during recovery process of deformed autentie in a Fe-40%Ni-0.1%Nb (mass fraction) modle steel was also studied by transmission electron microscopy (TEM). Thereby, a theoretical model about recovery of deformed austenite was developed according to the slip of dislocations and the solute drag. The values calculated by the model are consistent with the experimental results and the metallurgic principles. It is shown that both solute and precipitation of Nb can slow down the recovery and enhance the strain accumulation. The Nb solute drag can increase the activation free energy of the recovery U0 and decrease the activation length. It is believed that for Nb micro-alloyed steels with low C and high Mn, the strain accumulation during finish rolling process would be relied on the Nb solute drag effect in hot-strip mill, and both solute drag and precipitation pin effects in heavy plate mill.
Key words:  Nb microalloyed steel      stress relaxing curve      recovery      solute drag      strain accumulation     
Received:  10 April 2012     
Corresponding Authors:  Wen-Jin NIE     E-mail:  materialnwj@126.com

Cite this article: 

NIE Wenjin SHANG Chengjia WU Shengjie SHI Peijian CHENG Junjie ZHANG Xiaobing. EFFECTS OF Nb ON RECOVERY OF HOT-DEFORMED AUSTENITE. Acta Metall Sin, 2012, 48(7): 775-781.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00189     OR     https://www.ams.org.cn/EN/Y2012/V48/I7/775

[1] Cuddy L J. Proceedings of an International Conference on the Themo-Mechanically Processing of Microalloyed Austenite, Metallurgical Society of AIME, 1981: 129

[2] DeArdo A J, Gray J M, Meyer L. In: Stuart H ed., Fundamental Metallurgy of Niobium in Steel, Niobium: AIME, 1981: 685

[3] Miao C L, Shang C J, Zhang G D, Zhu G H, Zurob H S, Subramanian S V. Frontiers Mater Sci China, 2010; 4: 197

[4] Miao C L, Shang C J, Zhang G D, Subramanian S V. Mater Sci Eng, 2010; A527: 4985

[5] Zurob H S, Zhu G, Subramanian S V, Purdy G R, Hutchinson C R, Brechet Y. ISIJ Int, 2005; 45: 713

[6] Zurob H S, Zhu G, Subramanian S V, Purdy G R, Hutchinson C R, Brechet Y. Mater Sci Forum, 2005; 500–501: 123

[7] Hutchinson C R, Zurob H S, Sinclair C W, Brechet Y. Scr Mater, 2008; 59: 635

[8] Nie W J, Xin W F, Xu T M, Shi P J, Zhang X B. Adv Mater Res, 2011; 194–196: 1183

[9] Nie W J, Wang Z F, Li R, Li Y C, Zhang X B. Iron Steel, 2009; 44(8): 76

(聂文金, 王志福, 李冉, 李玉藏, 张晓兵. 钢铁, 2009; 44(8): 76)

[10] Yoshitaka A. In: Enomoto M ed., New Structure Steels and New Design of Conatructions, 6th Workshop on the Ultra–Steel, Tsukuba: The Iron and Steel Institute of Japan, 2002: 91

[11] Liu W J, Jonas J J. Metall MaterTrans, 1988; 19A: 1403

[12] Yang S W, Shang C J, Wang X M, He X L. J Univ Sci Technol Beijing, 2001; 3: 214

[13] Yuan S Q, Yang S W, Shang C J, He X L. Mater Sci Forum, 2003; 426–432: 1307

[14] Yuan S Q, Yang S W, NieWJ, He X L. J Univ Sci Technol Beijing, 2003; 10: 76

[15] Yuan S Q, Yang S W, Nie W J, He X L. Acta Metall Sin, 2004; 40: 887

(苑少强, 杨善武, 聂文金, 贺信莱. 金属学报, 2004; 40: 887)

[16] Karjalainen L P, Perttula J. ISIJ Int, 1996; 36: 729

[17] Zhao J S. Theory Basis of Dislocations, Beijing: National Defence Industry Press, 1989: 125

(赵敬世. 位错理论基础, 北京: 国防工业出版社, 1989: 125)

[18] Verdier M, Brechet Y, Guyot P. Acta Mater, 1999; 47: 127

[19] Feng D. Physics of Metals, Vol.3, Beijing: Science Press, 2000: 373

(冯端, 金属物理学, 第三卷, 北京: 科学出版社, 2000: 373)

[20] Frost H J, Ashby M F. Deformation Mechanism Maps, Oxford: Pergamon Press, 1982: 21

[21] Furu T, Qrsund R, Nes E. Acta Metall Mater, 1995; 43: 2209

[22] Zurob H S, Hutchinson C R, Brechet Y, Purdy G R. Acta Mater, 2002; 50: 3075

[23] Feng D. Physics of Metals, Vol.1, Beijing: Science Press, 2000: 543

(冯端, 金属物理学, 第一卷, 北京: 科学出版社, 2000: 543)

[24] Friedel J. Dislocations. Oxford: Pergamon Press, 1964: 187

[25] Liu W J. Metall Mater Trans, 1995; 26A: 1641

[26] Hou H X, Yang Y, Zhang T, Liu M. Iron Steel, 2009; 44(8): 72

(侯华兴, 杨 颖, 张涛, 刘 明. 钢铁, 2009; 44(8): 72)
[1] Junqin SHI,Kun SUN,Liang FANG,Shaofeng XU. Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment[J]. 金属学报, 2019, 55(8): 1034-1040.
[2] ZHANG Fei , SHEN Jian , YAN Xiaodong , SUN Jianlin , JIANG Na , ZHOU Hua . DYNAMIC SOFTENING MECHANISM OF 2099 ALLOY DURING HOT DEFORMATION PROCESS[J]. 金属学报, 2014, 50(6): 691-699.
[3] TIAN Yuxing LI Shujun HAO Yulin YANG Rui. HIGH TEMPERATURE DEFORMATION BEHAVIOR AND MICROSTRUCTURE EVOLUTION MECHANISM TRANSFORMATION IN Ti2448 ALLOY[J]. 金属学报, 2012, 48(7): 837-844.
[4] YANG Chenggong, SHAN Jiguo, REN Jialie. STUDY ON SHAPE RECOVERY TEMPERATURE OF TiNi ALLOY LASER WELD JOINT[J]. 金属学报, 2012, 48(5): 513-518.
[5] GAO Guhui ZHANG Han BAI Bingzhe. EFFECT OF TEMPERING TEMPERATURE ON LOW TEMPERATURE IMPACT TOUGHNESS OF A LOW CARBON Mn-SERIES BAINITIC STEEL[J]. 金属学报, 2011, 47(5): 513-519.
[6] JIA Bin PENG Yan. CONSTITUTIVE RELATIONSHIPS OF Nb MICROALLOYED STEEL DURING HIGH TEMPERATURE DEFORMATION[J]. 金属学报, 2011, 47(4): 507-512.
[7] WU Jinbin LIU Guoquan WANG Hao. EFFECT OF Nb, Ti AND V ON THE HOT DEFORMATION BEHAVIOR OF LOW CARBON Nb MICROALLOYED STEELS[J]. 金属学报, 2010, 46(7): 838-843.
[8] FU Liming SHAN Aidang WANG Wei. EFFECT OF Nb SOLUTE DRAG AND NbC PRECIPITATE PINNING ON THE RECRYSTALLIZATION GRAIN GROWTH IN LOW CARBON Nb-MICROACLOYED STEEL[J]. 金属学报, 2010, 46(7): 832-837.
[9] WEI Shitong LU Shanping HE Guangzhong ZHAO Xu LI Dianzhong LI Yiyi . EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTY OF WELD METAL WITH Nb ADDITION[J]. 金属学报, 2009, 45(9): 1063-1069.
[10] SHEN Kun WANG Mingpu GUO Mingxing LI Shumei . STUDY ON HIGH TEMPERATURE DEFORMATION CHARACTERISTICS OF Cu–0.23%Al2O3 DISPERSION–STRENGTHENED COPPER ALLOY[J]. 金属学报, 2009, 45(5): 597-604.
[11] WANG Weiguo; ZHOU Bangxin; FENG Liu; ZHANG Xin; XIA Shuang. Grain Boundary Character Distributions (GBCD) of Cold-Rolled Pb--Ca--Sn--Al Alloy[J]. 金属学报, 2006, 42(7): 715-721 .
[12] LIU Xiaopeng; JIN Wei; CAO Mingzhou; YANG Rui. EFFECT OF CONSTRAINT TRANSFORMATION ON RECOVERY STRAIN OF Ti44Ni47Nb9 ALLOY[J]. 金属学报, 2004, 40(4): 363-366 .
[13] LIU Xiaopeng; JIN Wei; CAO Mingzhou; YANG Rui. Study on Constraint Transformation Behavior of Tini Alloy[J]. 金属学报, 2004, 40(2): 130-134 .
[14] SUN Jian; FU Yunyi; SHI Rong; SUN Xiaoguang; HU Gengxiang (The Public Laboratory of State Education Commission for High Temperature Materials & High Temperature Tests; Shanghai Jiaotong University; Shanghai 200030). THE HIGH TEMPERATURE TENSILE BEHAVIORS OF Al_(67)Ti_(25)Mn_8 INTERMETALLICS UNDER DIFFERENT STRAIN RATES[J]. 金属学报, 1998, 34(5): 526-530.
[15] WANG Baoyi; ZHANG Shuihe; WANG Tianmin (Lanzhou University;Lanzhou 730000). RECOVERY BEHAVIOUR OF QUENCHED-IN DEFECTS IN Fe-Cr-Ni ALLOY BY POSITRON ANNIHILATION[J]. 金属学报, 1997, 33(3): 271-276.
No Suggested Reading articles found!