Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel
LI Min1,2, LI Haoze1(), WANG Jijie2, MA Yingche1, LIU Kui1
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.College of Materials Science and Engineering, Shenyang Areospace University, Shenyang 110136, China
Cite this article:
LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel. Acta Metall Sin, 2022, 58(5): 637-648.
Non-oriented 6.5%Si electrical steel exhibits excellent high-frequency magnetic properties, such as low iron loss and near-zero magnetostriction. Moreover, the high Si content causes poor deformability due to the solution strengthening effect of Si and the resulting ordering transformations, delaying the commercial application. Strip casting is a near-net forming technology that directly produces thin strips from the melt and reduces the required rolling deformation for the fabrication of thin sheets. This technology could be a viable option for industrializing the production of non-oriented 6.5%Si electrical steel. Despite this, even in the strip casting process, this brittle material is prone to edge cracks. Thus, improving the intrinsic plasticity of strip casting non-oriented 6.5%Si electrical steel is necessary through chemical modification to eliminate the deforming defects. The effect of Ce on the ordered phase of the solidification microstructure, high-temperature tensile properties, and fracture mode of strip casting non-oriented 6.5%Si electrical steel was investigated in this work. The results showed that the addition of Ce introduced high-melting Ce2O2.5S and Ce4O4S3 during strip casting, which promoted heterogeneous nucleation and refined the solidification microstructure of the as-cast strip. The presence of Ce did not affect the ordering condition of the as-cast strip. In decreasing order, the tensile temperatures corresponding to the ordered degree of the as-cast strip were 650, 400, and 800oC. With the tensile temperature increasing, the yield and tensile strengths of the as-cast strip decreased, whereas the elongation gradually increased. When the tensile temperature exceeded 500oC, the purification and microstructure refining effects of Ce improved grain-boundary cohesion and prevented intergranular cracking. Moreover, the occurrences of dynamic recovery and recrystallization eventually made the as-cast strip doped with Ce fractured by dimples, leading to a considerably enhanced tensile ductility. According to the findings, the rare-earth treatment should be considered as an effective method for increasing the ductility of strip casting non-oriented 6.5%Si electrical steel.
Table 1 Chemical compositions of the as-cast non-oriented 6.5%Si steel strips
Fig.1 Schematic diagrams of strip casting process (a) and the solidification process (b)
Fig.2 Low (a, c) and high (b, d) magnified OM images of the CS1 (a, b) and CS2 (c, d) as-cast strips (ND—normal direction, RD—rolling direction)
Fig.3 SEM images and the corresponding EPMA elemental maps of the CS1 (a) and CS2 (b, c) as-cast strips
Position
Fe
Si
Ce
O
S
Ce∶O∶S
c-1
38.64
3.37
19.46
27.91
10.62
1.83∶2.63∶1
c-2
30.01
2.78
24.69
23.63
18.89
3.92∶3.75∶3
c-3
7.60
0.33
30.26
35.06
26.75
3.39∶3.93∶3
c-4
12.77
0.86
33.07
29.13
24.16
4.11∶3.65∶3
Table 2 EPMA analysis results of the granular second phases in Fig.3c
Case
[uvw]s
[uvw]n
d[uvw]s / nm
d[uvw]n / nm
θ / (o)
d[uvw]s·cosθ / nm
δ / %
δ-Fe
[]
[] δ-Fe
0.3967
0.4146
0
0.3967
3.9
[]
[] δ-Fe
0.6871
0.7128
0
0.6871
[]
[] δ-Fe
0.3967
0.4146
0
0.3967
δ-Fe
[]
[] δ-Fe
0.3958
0.4146
0
0.3958
4.6
[]
[] δ-Fe
1.0457
1.0970
0
1.0457
[]
[] δ-Fe
0.6851
0.7182
0
0.6851
Table 3 Calculated results of the lattice misfit between Ce2O2.5S, Ce4O4S3, and δ-Fe
Fig.4 Engineering stress-strain curves of the CS1 (a) and CS2 (b) as-cast strips tensile tested from 300oC to 900oC
Fig.5 Comparisons of the yield strength (Rp0.2) (a), tensile strength (Rm) (b), and elongation (c) of the CS1 and CS2 as-cast strips
Fig.6 Dark field TEM images and the corresponding [001] SAED patterns (insets) of the CS1 (a, c, e) and CS2 (b, d, f) as-cast strips tensile tested at 400oC (a, b), 650oC (c, d), and 800oC (e, f) (APB—antiphase boundary)
Fig.7 SEM images showing tensile fracture morphologies of the CS1 (a, c) and CS2 (b, d) as-cast strips tested at 300oC (a, b) and 400oC (c, d)
Fig.8 Longitudinal OM images of the CS1 (a, c) and CS2 (b, d) as-cast strips fractured at 300oC (a, b) and 400oC (c, d)
Fig.9 SEM images showing tensile fracture morphologies of the CS1 (a, c) and CS2 (b, d) as-cast strips tested at 500oC (a, b) and 650oC (c, d)
Fig.10 Longitudinal OM images of the CS1 (a, c) and CS2 (b, d) as-cast strips fractured at 500℃ (a, b) and 650℃ (c, d)
Fig.11 SEM images showing tensile fracture morphologies of the CS1 (a, c, e) and CS2 (b, d, f) as-cast strips tested at 700oC (a, b), 800oC (c, d), and 900oC (e, f)
Fig.12 Longitudinal OM images of the CS1 (a, c, e) and CS2 (b, d, f) as-cast strips fractured at 700oC (a, b), 800oC (c, d), and 900oC (e, f)
1
Yao Y C, Sha Y H, Liu J L, et al. Texture and magnetic properties of rolled Fe-6.5wt.% Si thin sheets [J]. J. Electron. Mater., 2014, 43: 121
doi: 10.1007/s11664-013-2842-2
2
Tanaka Y, Takada Y, Abe M, et al. Magnetic properties of 6.5%Si-Fe sheet and its applications [J]. J. Magn. Magn. Mater., 1990, 83: 375
doi: 10.1016/0304-8853(90)90553-3
3
Abe M, Takada Y, Murakami T, et al. Magnetic properties of commercially produced Fe-6.5wt% Si sheet [J]. J. Mater. Eng., 1989, 11: 109
doi: 10.1007/BF02833761
4
Phway T P P, Moses A J. Magnetostriction trend of non-oriented 6.5% Si-Fe [J]. J. Magn. Magn. Mater., 2008, 320: e611
doi: 10.1016/j.jmmm.2008.04.074
5
Viala B, Degauque J, Fagot M, et al. Study of the brittle behaviour of annealed Fe-6.5wt% Si ribbons produced by planar flow casting [J]. Mater. Sci. Eng., 1996, A212: 62
6
Ouyang G Y, Chen X, Liang Y F, et al. Review of Fe-6.5 wt%Si high silicon steel—A promising soft magnetic material for sub-kHz application [J]. J. Magn. Magn. Mater., 2019, 481: 234
doi: 10.1016/j.jmmm.2019.02.089
7
Li C S, Yang C L, Cai G J, et al. Ordered phases and microhardness of Fe-6.5%Si steel sheet after hot rolling and annealing [J]. Mater. Sci. Eng., 2016, A650: 84
8
Li R, Shen Q, Zhang L M, et al. Magnetic properties of high silicon iron sheet fabricated by direct powder rolling [J]. J. Magn. Magn. Mater., 2004, 281: 135
doi: 10.1016/j.jmmm.2004.04.098
9
Fu H D, Zhang Z H, Jiang Y B, et al. Improvement of magnetic properties of an Fe-6.5wt.% Si alloy by directional solidification [J]. Mater. Lett., 2011, 65: 1416
doi: 10.1016/j.matlet.2011.02.020
10
Xie J X, Fu H D, Zhang Z H, et al. Deformation twinning feature and its effects on significant enhancement of tensile ductility in columnar-grained Fe-6.5wt.%Si alloy at intermediate temperatures [J]. Intermetallics, 2012, 23: 20
doi: 10.1016/j.intermet.2011.12.011
11
Fu H D, Zhang Z H, Jiang Y B, et al. Applying the grain orientation dependence of deformation twinning to improve the deformation properties of an Fe-6.5wt%Si alloy [J]. J. Alloys Compd., 2016, 689: 307
doi: 10.1016/j.jallcom.2016.07.319
12
Haiji H, Okada K, Hiratani T, et al. Magnetic properties and workability of 6.5%Si steel sheet [J]. J. Magn. Magn. Mater., 1996, 160: 109
doi: 10.1016/0304-8853(96)00128-X
13
Yamaji T, Abe M, Takada Y, et al. Magnetic properties and workability of 6.5% silicon steel sheet manufactured in continuous CVD siliconizing line [J]. J. Magn. Magn. Mater., 1994, 133: 187
doi: 10.1016/0304-8853(94)90521-5
14
Matsushita T, Nakayama K, Fukase H, et al. Development and commercialization of twin roll strip caster [J]. IHI Eng. Rev., 2009, 42: 1
15
Zapuskalov N. Comparison of continuous strip casting with conventional technology [J]. ISIJ Int., 2003, 43: 1115
doi: 10.2355/isijinternational.43.1115
16
Ge S, Isac M, Guthrie R I L. Progress in strip casting technologies for steel; technical developments [J]. ISIJ Int., 2013, 53: 729
doi: 10.2355/isijinternational.53.729
17
Ge S, Isac M, Guthrie R I L. Progress of strip casting technology for steel; historical developments [J]. ISIJ Int., 2012, 52: 2109
doi: 10.2355/isijinternational.52.2109
18
Liu H T, Liu Z Y, Sun Y, et al. Development of λ-fiber recrystallization texture and magnetic property in Fe-6.5wt% Si thin sheet produced by strip casting and warm rolling method [J]. Mater. Lett., 2013, 91: 150
doi: 10.1016/j.matlet.2012.09.046
19
Li H Z, Liu H T, Liu Z Y, et al. Microstructure, texture evolution and magnetic properties of strip-casting non-oriented 6.5 wt.% Si electrical steel doped with cerium [J]. Mater. Charact., 2015, 103: 101
doi: 10.1016/j.matchar.2015.03.024
20
Li H Z, Liu H T, Liu Z Y, et al. Characterization of microstructure, texture and magnetic properties in twin-roll casting high silicon non-oriented electrical steel [J]. Mater. Charact., 2014, 88: 1
doi: 10.1016/j.matchar.2013.11.014
21
Liu H T, Li H Z, Li H L, et al. Effects of rolling temperature on microstructure, texture, formability and magnetic properties in strip casting Fe-6.5 wt% Si non-oriented electrical steel [J]. J. Magn. Magn. Mater., 2015, 391: 65
doi: 10.1016/j.jmmm.2015.04.105
22
Li H Z, Liu Z Y. Tensile properties of strip casting 6.5 wt% Si steel at elevated temperatures [J]. Mater. Sci. Eng., 2015, A639: 412
23
Li H Z, Liu H T, Wang X L, et al. Effect of cerium on the as-cast microstructure and tensile ductility of the twin-roll casting Fe-6.5wt% Si alloy [J]. Mater. Lett., 2016, 165: 5
doi: 10.1016/j.matlet.2015.11.100
24
Liu H T, Liu Z Y, Qiu Y Q, et al. Characterization of the solidification structure and texture development of ferritic stainless steel produced by twin-roll strip casting [J]. Mater. Charact., 2009, 60: 79
doi: 10.1016/j.matchar.2008.06.005
25
Spinelli J E, Tosetti J P, Santos C A, et al. Microstructure and solidification thermal parameters in thin strip continuous casting of a stainless steel [J]. J. Mater. Process. Technol., 2004, 150: 255
doi: 10.1016/j.jmatprotec.2004.02.040
26
Takatani H, Gandin C A, Rappaz M. EBSD characterisation and modelling of columnar dendritic grains growing in the presence of fluid flow [J]. Acta Mater., 2000, 48: 675
doi: 10.1016/S1359-6454(99)00413-9
27
Waudby P E. Rare earth additions to steel [J]. Int. Met. Rev., 1978, 23: 74
doi: 10.1179/imr.1978.23.1.74
28
Chen X, Li Y X. Fracture toughness improvement of austempered high silicon steel by titanium, vanadium and rare earth elements modification [J]. Mater. Sci. Eng., 2007, A444: 298
29
Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J]. Metall. Trans., 1970, 1: 1987
30
Ouyang G Y, Macziewski C R, Jensen B, et al. Effects of solidification cooling rates on microstructures and physical properties of Fe-6.5% Si alloys [J]. Acta Mater., 2021, 205: 116575
doi: 10.1016/j.actamat.2020.116575
31
Cai G J, Yang Y, Huang Y R, et al. The significance of Ce on hot compression deformation and mechanical behavior of Fe-6.9 wt%Si alloy: Decrease of order degree and transformation of dislocations [J]. Mater. Charact., 2020, 163: 110220
doi: 10.1016/j.matchar.2020.110220
32
Shi X J, Liang Y F, Liu B B, et al. Warm deformation behavior and work-softening mechanism of Fe-6.5wt.%Si alloy [J]. J. Iron Steel Res. Int., 2020, 27: 342
33
Jung H, Kim J. Influence of cooling rate on iron loss behavior in 6.5wt% grain-oriented silicon steel [J]. J. Magn. Magn. Mater., 2014, 353: 76
doi: 10.1016/j.jmmm.2013.10.004
34
Yu X, Zhang Z H, Xie J X. Microstructure, ordered structure and warm tensile ductility of Fe-6.5% Si alloy with various Ce content [J]. Acta Metall. Sin., 2017, 53: 927