Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (7): 782-788    DOI: 10.3724/SP.J.1037.2011.00659
论文 Current Issue | Archive | Adv Search |
INFLUENCE OF COLUMNAR GRAINS ON THE COLD ROLLING TEXTURE EVOLUTION IN Fe-3%Si\ ELECTRICAL STEEL
ZHANG Ning, YANG Ping, MAO Weimin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Download:  PDF(6037KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Columnar grains exist in nearly all cast slabs of Fe-3%Si electrical steels, their morphological and crystallographic anisotropies strongly influence the microstructure and texture evolution during following hot rolling, cold rolling and final annealing. This work investigates the rolling texture and microstructure of the specimens with columnar grains initially arranged along different directions by means of XRD and EBSD techniques, and the effects of columnar grain boundaries are analyzed. The results show that at intermediate rolling reduction, all three types of specimens show to different extents the inheritance of {001} texture, or in other words, they prevent effectively the formation of {111} texture. The {001} texture is strongly retained in ND specimen (with initial columnar grains' longitudinal axis being along normal direction) and TD specimen (with initial columnar grains' longitudinal axis being along transverse direction), whereas {111}<112> texture is the strongest in RD specimen(with initial columnar grains' longitudinal axis being along rolling direction). In addition, rotated cube and {111}<110> textures develop in TD specimen. All three types of specimens demonstrate an orientation rotation path from cube {001}<100> over 20o rotated cube {001}<130> to {113}<251>, which is in contrast to the conventional rotation path from α fiber to $\gamma$ fiber in equiaxed polycrystalline electrical steels. In spite of the significant difference in grain boundary arrangement in the three types of specimens, their influence on texture formation is limited because of the large grain sizes and the influence is mainly related with initial orientations. To understand rolling texture evolution of columnar grain specimens is of great significance in the development of new type electrical steels with strong {001} texture.
Key words:  electrical steel      columnar grain      texture      cold rolling     
Received:  24 October 2011     

Cite this article: 

ZHANG Ning YANG Ping MAO Weimin. INFLUENCE OF COLUMNAR GRAINS ON THE COLD ROLLING TEXTURE EVOLUTION IN Fe-3%Si\ ELECTRICAL STEEL. Acta Metall Sin, 2012, 48(7): 782-788.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00659     OR     https://www.ams.org.cn/EN/Y2012/V48/I7/782

[1] Kovac F, Stoyka V, Petryshynets I. J Magn Magn Mater, 2008; 320: 627

[2] Takashima M, Komatsubara M, Morito N. ISIJ Int, 1997; 37: 1263

[3] Gobernado P, Petrov R, Ruiz D, Leunis E, Kestens L A I. Mater Sci Forum, 2010; 638–642: 2829

[4] Tomida T, Tanaka T. ISIJ Int, 1995; 35: 548

[5] Kovac F, Dzubinsky M, Sidor Y. J Magn Magn Mater, 2004; 269: 333

[6] Gutierrez–Castaneda E J, Salinas–Rodriguez A. J Magn Magn Mater, 2011; 323: 2524

[7] Yoshinaga N, Kestens L, De Cooman B C. Mater Sci Forum, 2005; 495–497: 1267

[8] Gautam J P, Petrov R, Kestens L. Mater Sci Forum, 2007; 550: 503

[9] Kestens L. Jonas J J, Van Houtte P, Aernoudt E. Metall Mater Trans, 1996; 27A: 2347

[10] Abe H, Matsuo M, Ito K. Trans JIM, 1962; 26: 684

[11] Walter J L, Koch E F. Acta Metall, 1962; 10: 1059

[12] Dorner D, Zaefferer S, Lahn L, Raabe D. J Magn Magn Mater, 2006; 304: 183

[13] Koh P K, Dunn C G. J Met, 1955; 7: 401

[14] Dunn C G. Acta Metall, 1954; 2: 173

[15] Walter J L, Hibbard W L. Trans AIME, 1958; 212: 731

[16] Inagaki H, Suda T. Texture, 1972; 1: 129

[17] B¨ottcher A, L¨ucke K. Acta Metall Mater, 1993; 41: 2503

[18] Mishra S, Darmann C, L¨ucke K. Acta Metall, 1984; 32: 2185

[19] Shimizu Y, Ito Y, Iida Y. Metall Trans, 1986; 17A: 1323

[20] Xie J X, Fu H D, Zhang Z H, Jiang Y B. Mater Sci Eng, 2012; A538: 315

[21] Zhang N, Yang P, Mao W M. Acta Metall Sin, 2012; 48: 307

(张宁, 杨平, 毛卫民. 金属学报, 2012; 48:307)

[22] Liu H T, Liu Z Y, Qiu Y Q, Cao G M, Li C G, Wang G D. Mater Charact, 2009; 60: 79

[23] Tsuji N, Tsuzaki K, Maki T. ISIJ Int, 1992; 32: 1319

[24] Quadir M Z, Duggan B J. Acta Mater, 2004; 52: 4011

[25] Hutchinson B. Trans R Soc Lond, 1999; 357A: 1471

[26] Van Houtte P, Li S, Seefeldt M, Delannay L. Int J Plast, 2005; 21: 589

[27] Stojakovic D, Doherty R D, Kalidindi S R, Landgraf F J G. Metall Mater Trans, 2008; 39A: 1738
[1] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[2] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[3] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[4] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[5] Chunbo LAN,Jianeng LIANG,Yuanxia LAO,Dengfeng TAN,Chunyan HUANG,Xianzhong MO,Jinying PANG. Anomalous Thermal Expansion Behavior of Cold-RolledTi-35Nb-2Zr-0.3O Alloy[J]. 金属学报, 2019, 55(6): 701-708.
[6] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
[7] Houlong LIU,Mingyu MA,Lingling LIU,Liangliang WEI,Liqing CHEN. Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel[J]. 金属学报, 2019, 55(5): 566-574.
[8] Dechun REN, Huhu SU, Huibo ZHANG, Jian WANG, Wei JIN, Rui YANG. Effect of Cold Rotary-Swaging Deformation on Microstructure and Tensile Properties of TB9 Titanium Alloy[J]. 金属学报, 2019, 55(4): 480-488.
[9] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[10] Chen GU, Ping YANG, Weimin MAO. The Influence of Rolling Process on the Microstructure, Texture and Magnetic Properties of Low Grades Non-Oriented Electrical Steel After Phase Transformation Annealing[J]. 金属学报, 2019, 55(2): 181-190.
[11] Lina WANG, Ping YANG, Kai LI, Feng'e CUI, Weimin MAO. Phase Transformation and Texture Evolution During Cold Rolling and α'-M Reversion in High Manganese TRIP Steel[J]. 金属学报, 2018, 54(12): 1756-1766.
[12] Tingbiao GUO, Qi LI, Chen WANG, Feng ZHANG, Zhi JIA. Deformation Characteristics and Mechanical Properties of Single Crystal Copper During Equal Channel Angular Pressing by Route A[J]. 金属学报, 2017, 53(8): 991-1000.
[13] Yi CHEN, Mingxing GUO, Long YI, Bo YUAN, Gaojie LI, Linzhong ZHUANG, Jishan ZHANG. Optimization and Controlling on the Microstructure, Texture and Properties of an Advanced Al-Mg-Si-Cu-Zn Alloy Sheet[J]. 金属学报, 2017, 53(8): 907-917.
[14] Louwen ZHANG,Ping YANG,Weimin MAO. Phenomena of Σ3 and Orientation Gradients in an ElectricalSteel Appliedα→γ→α Transformation[J]. 金属学报, 2017, 53(1): 19-30.
[15] Yaqiong YAN,Jinru LUO,Jishan ZHANG,Linzhong ZHUANG. Study on the Microstructural Evolution and Mechanical Properties Control of a Strong Textured AZ31 Magnesium Alloy Sheet During Cryorolling[J]. 金属学报, 2017, 53(1): 107-113.
No Suggested Reading articles found!