Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (3): 399-412    DOI: 10.11900/0412.1961.2022.00023
Research paper Current Issue | Archive | Adv Search |
Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel
LI Min1,2, WANG Jijie1, LI Haoze2,3(), XING Weiwei2, LIU Dezhuang2, LI Aodi2, MA Yingche2
1 College of Materials Science and Engineering, Shenyang Areospace University, Shenyang 110136, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
Cite this article: 

LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel. Acta Metall Sin, 2023, 59(3): 399-412.

Download:  HTML  PDF(6055KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the rapid development of electric, electronics, and military industries, there is an urgent demand for high-performance electrical steel. Non-oriented 6.5%Si electrical steel is an advanced soft magnetic material that exhibits excellent high-frequency soft magnetic properties, such as low iron loss, high magnetic permeability, and near-zero magnetostriction, which attracts considerable attention and has broad application prospects in the high-frequency field. Microalloying of rare earth elements, including Ce, La, and Y, is known to improve the ductility of 6.5%Si electrical steel. However, there are relatively few studies on the enhancement mechanism of medium-temperature plasticity of 6.5%Si electrical steel by addition of Y. In this study, the effect of Y on the solidification microstructure, ordered phase, warm compression behavior, and softening mechanism of non-oriented 6.5%Si electrical steel was investigated by EPMA, EBSD, XRD, TEM, and hot compressive test. The results indicated that the addition of 0.017% and 0.15% of Y led to the formation of high-melting-point Y2O3 + Y2O2S/Y2O2S-YP compounds in the melt which effectively promoted heterogeneous nucleation. At the end of the solidification process, the interdendritic rare-earth compounds were identified as Y2Fe14Si3 and the solidification microstructure was obviously refined. In addition, with the increasing Y content, the ordered degree of the matrix decreased. The compression test at 500oC indicated that the deformation mechanisms of all the specimens were dominated by a dislocation slip. The critical strain corresponding to the peak stress of the specimens doped with Y decreased. The advancement of the work softening stage and reduction in the following work hardening rate suggested that the dynamic softening effect was enhanced in the specimens doped with Y. After deformation, the matrix was in a disordered state, however, the dislocation density in the matrix was directly proportional to the Y content. Eventually, the primary reason for the enhancement of the dynamic softening effect was attributed to the low ordered degree and high deformation-induced disordering of the matrix by addition of Y.

Key words:  non-oriented 6.5%Si electrical steel      Y      warm deformation      microstructure      ordered degree      work softening     
Received:  17 January 2022     
ZTFLH:  TG11  
Fund: National Natural Science Foundation of China(51801221)
About author:  LI Haoze, professor, Tel: (024)83978411, E-mail: 2022020@tyust.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00023     OR     https://www.ams.org.cn/EN/Y2023/V59/I3/399

SampleCSONPYSiFe
0Y0.0070< 0.0010.00050.00080.002< 0.00056.35Bal.
0.017Y0.0086< 0.0010.00060.00090.0020.0176.43Bal.
0.15Y0.0081< 0.0010.00050.00090.0020.156.50Bal.
Table 1  Chemical compositions of the ingots with various Y contents
Fig.1  Macrostructures (a-c) and high magnified SEM images (d-f) of the as-cast 0Y (a, d), 0.017Y (b, e), and 0.15Y (c, f) ingots (Insets in Figs.1e and f show the magnified images. GB—grain boundary, IGC—intragranular rare-earth compound, IDC—interdendritic rare-earth compound)
Fig.2  SEM images and the corresponding EPMA elemental maps of the intragranular rare-earth compounds in the as-cast 0.017Y (a) and 0.15Y (b) ingots
SampleFeSiYOSP
0.017Y2.641.1730.6063.680.821.09
0.15Y18.402.1535.8528.7311.083.79
Table 2  EDS results of the intragranular rare-earth compounds
[uvw]s[uvw]nd[uvw]s / nmd[uvw]n / nmθ / (o)d[uvw]s·cosθ / nmδ
[001] δ - Fe[001]YP0.28450.282600.28450.67%
[1¯12] δ - Fe[1¯12]YP0.69690.692200.6969
[1¯10] δ - Fe[1¯10]YP0.40230.399700.4023
Table 3  Calculated results of the lattice misfit between YP and δ-Fe (Case: (220)YP//(110)δ-Fe)
Fig.3  SEM image (a), the corresponding Kikuchi patterns (b, c), and EDS elemental maps (d-f) of the interdendritic rare-earth compounds in the as-cast 0.017Y ingot
Fig.4  SEM image (a), the corresponding Kikuchi patterns (b, c), and EDS elemental maps (d-f) of the interdendritic rare-earth compounds in the as-cast 0.15Y ingot
SamplePositionAtomic fraction / %
FeSiY
0.017YMatrix88.1611.840
Rare-earth compound77.0115.337.66
0.15YMatrix87.9612.040
Rare-earth compound75.6416.278.09
Table 4  EDS analysis results of the interdendritic rare-earth compounds in Figs.3 and 4
Fig.5  Schematic of the solidification process of non-oriented 6.5%Si electrical steel doped with Y
Fig.6  XRD spectra of the ingots with various Y contents
Fig.7  SAED patterns along [001] zone axes of the as-cast 0Y (a), 0.017Y (b), and 0.15Y (c) samples
Fig.8  True stress-true strain curves of the as-cast 0Y (a), 0.017Y (b), and 0.15Y (c) samples at 500oC with constant strain rate of 1 s-1 and constant reduction of 40%
Fig.9  Comparisons of θ-ε curves (a), peak stress and the corresponding critical strain (b) of the as-cast samples with various Y contents compressed at 500oC (θ—work hardening rate, ε—true strain)
Fig.10  Macrographies of the as-cast samples with various Y contents after compression at 500oC
Fig.11  Longitudinal OM images showing the micro-structures of the as-cast 0Y (a), 0.017Y (b), and 0.15Y (c) samples after compression at 500oC, and statistical results of cracks in the surface regions (d) (CD—compression direction)
Fig.12  CD-inverse pole figures (IPFs) (a-c), Σ3-60°<111> special grain boundary distribution maps (d-f), and EDS elemental maps (g-i) of the as-cast 0Y (a, d, g), 0.017Y (b, e, h), and 0.15Y (c, f, i) samples after compression at 500oC
Fig.13  Longitudinal EBSD grain orientation maps (a, c, e) and local misorientation (LM) maps (b, d, f) of the as-cast 0Y (a, b), 0.017Y (c, d), and 0.15Y (e, f) samples after compression at 500oC
Fig.14  LM distribution histograms of the as-cast 0Y (a), 0.017Y (b), and 0.15Y (c) samples after compression at 500oC, and the corresponding geometrically necessary dislocation (GND) densities (ρGND) (d) (R2—coefficient of determination)
Fig.15  Dislocation configurations in bright-field TEM images (a-c) and the corresponding SAED patterns (d-f) along [001] zone axes of the as-cast 0Y (a, d), 0.017Y (b, e), and 0.15Y (c, f) samples after compression at 500oC
1 Ouyang G Y, Chen X, Liang Y F, et al. Review of Fe-6.5 wt%Si high silicon steel—A promising soft magnetic material for sub-kHz application [J]. J. Magn. Magn. Mater., 2019, 481: 234
doi: 10.1016/j.jmmm.2019.02.089
2 Li H Z, Liu H T, Liu Z Y, et al. Microstructure, texture evolution and magnetic properties of strip-casting non-oriented 6.5 wt. % Si electrical steel doped with cerium [J]. Mater. Charact., 2015, 103: 101
doi: 10.1016/j.matchar.2015.03.024
3 Li H Z, Liu H T, Wang X L, et al. Effect of cerium on the as-cast microstructure and tensile ductility of the twin-roll casting Fe-6.5wt. % Si alloy [J]. Mater. Lett., 2016, 165: 5
doi: 10.1016/j.matlet.2015.11.100
4 Yu X, Zhang Z H, Xie J X. Effects of rare earth elements doping on ordered structures and ductility improvement of Fe-6.5 wt%Si alloy [J]. Mater. Lett., 2016, 184: 294
doi: 10.1016/j.matlet.2016.08.074
5 Yu X, Zhang Z H, Xie J X. Microstructure, ordered structure and warm tensile ductility of Fe-6.5% Si alloy with various Ce content [J]. Acta Metall. Sin., 2017, 53: 927
于 宣, 张志豪, 谢建新. 不同Ce含量Fe-6.5% Si合金的组织、有序结构和中温拉伸塑性 [J]. 金属学报, 2017, 53: 927
6 Cai G J, Wang Y Z, Huang Y R, et al. Effect of Ce on bending properties and soft magnetic properties of Fe-6.9wt% Si steel [J]. Mater. Sci. Technol., 2020, 28(4): 16
蔡国君, 王粤竹, 黄艳茹 等. 稀土Ce对Fe-6.9%Si钢的弯曲性能与软磁性能的影响 [J]. 材料科学与工艺, 2020, 28(4): 16
7 Cai G J, Yang Y, Huang Y R, et al. The significance of Ce on hot compression deformation and mechanical behavior of Fe-6.9wt%Si alloy: Decrease of order degree and transformation of dislocations [J]. Mater. Charact., 2020, 163: 110220
doi: 10.1016/j.matchar.2020.110220
8 Liu D F, Qin J, Zhang Y H, et al. Effect of yttrium addition on the hot deformation behavior of Fe-6.5wt% Si alloy [J]. Mater. Sci. Eng., 2020, A797: 140238
9 Zhao H B, Qin J, Liu D F, et al. Effect of rare earth yttrium on the tensile properties of 6.5%Si steel [J]. Nonferrous Met. Sci. Eng., 2021, 12: 131
赵海斌, 秦 镜, 刘德福 等. 稀土Y对6.5%Si高硅钢拉伸性能的影响 [J]. 有色金属科学与工程, 2021, 12: 131
10 Zhou Q Y, Qin J, Liu D F, et al. Effects of rare earth Y on microstructure and texture evolution of 6.5 wt. % Si high-silicon steel during hot and warm rolling [J]. J. Iron Steel Res., 2021, 33: 600
周情耀, 秦 镜, 刘德福 等. 稀土Y对6.5%Si高硅钢热轧和温轧组织织构演变的影响 [J]. 钢铁研究学报, 2021, 33: 600
11 Yu H Y, Ming K S, Wu H C, et al. Ordering suppression and excellent ductility in soft-magnetic Fe-6.5wt%Si sheet by Hf addition [J]. J. Alloys Compd., 2018, 766: 186
doi: 10.1016/j.jallcom.2018.06.343
12 Du T. Thermodynamics of rare earth elements in iron-base solutions [J]. J. Iron Steel Res., 1994, 6(3): 6
杜 挺. 稀土元素在铁基溶液中的热力学 [J]. 钢铁研究学报, 1994, 6(3): 6
13 Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J]. Metall. Trans., 1970, 1: 1987
14 Villars P, Okamoto H. Fe-Si-Y isothermal section of ternary phase diagram [DB/OL].
15 Lin C N, Sun Y X, Liu Z X, et al. Magnetic properties of Si-substituted Y2Fe17 [J]. Solid State Commun., 1992, 81: 299
doi: 10.1016/0038-1098(92)90813-O
16 Cheng Z Y, Liu J, Xiang Z D, et al. Effect of Cu addition on microstructure, texture and magnetic properties of 6.5wt% Si electrical steel [J]. J. Magn. Magn. Mater., 2021, 519: 167471
doi: 10.1016/j.jmmm.2020.167471
17 Li L F, Xing Z S. Solubilities of Ce, Nd and Y in α-Fe [J]. Acta Metall. Sin. (Engl. Lett.), 1993, 6: 309
18 Ji Y P, Zhang M X, Ren H P. Roles of lanthanum and cerium in grain refinement of steels during solidification [J]. Metals, 2018, 8: 884
doi: 10.3390/met8110884
19 Qian M, Cao P, Easton M A, et al. An analytical model for constitutional supercooling-driven grain formation and grain size prediction [J]. Acta Mater., 2010, 58: 3262
doi: 10.1016/j.actamat.2010.01.052
20 Shi X J, Liang Y F, Liu B B, et al. Warm deformation behavior and work-softening mechanism of Fe-6.5wt. %Si alloy [J]. J. Iron Steel Res. Int., 2020, 27: 342
doi: 10.1007/s42243-019-00325-8
21 Cai G J, Li C S, Cai B, et al. Effect of rolling reduction on antiphase domains, grain boundary character distribution and plastic deformation of Fe-6.5wt%Si alloy [J]. Mater. Lett., 2019, 238: 249
doi: 10.1016/j.matlet.2018.11.167
22 Swann P R, Grånäs L, Lehtinen B. The B2 and D03 ordering reactions in iron-silicon alloys in the vicinity of the curie temperature [J]. Met. Sci., 1975, 9: 90
doi: 10.1179/030634575790445279
23 Wen S B, Han C Y, Zhang B, et al. Flow behavior characteristics and processing map of Fe-6.5wt. %Si alloys during hot compression [J]. Metals, 2018, 8: 186
doi: 10.3390/met8030186
24 Fu H D, Zhang Z H, Jiang Y B, et al. Applying the grain orientation dependence of deformation twinning to improve the deformation properties of an Fe-6.5wt%Si alloy [J]. J. Alloys Compd., 2016, 689: 307
doi: 10.1016/j.jallcom.2016.07.319
25 Xie J X, Fu H D, Zhang Z H, et al. Deformation twinning in an Fe-6.5 wt. % Si alloy with columnar grains during intermediate temperature compression [J]. Mater. Sci. Eng., 2012, A538: 315
26 Xie J X, Fu H D, Zhang Z H, et al. Deformation twinning feature and its effects on significant enhancement of tensile ductility in columnar-grained Fe-6.5wt. %Si alloy at intermediate temperatures [J]. Intermetallics, 2012, 23: 20
doi: 10.1016/j.intermet.2011.12.011
27 Ashby M F. The deformation of plastically non-homogeneous materials [J]. Philos. Mag., 1970, 21: 399
28 Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity—I. Theory [J]. J. Mech. Phys. Solids, 1999, 47: 1239
doi: 10.1016/S0022-5096(98)00103-3
29 Kubin L P, Mortensen A. Geometrically necessary dislocations and strain-gradient plasticity: A few critical issues [J]. Scr. Mater., 2003, 48: 119
doi: 10.1016/S1359-6462(02)00335-4
30 Calcagnotto M, Ponge D, Demir E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD [J]. Mater. Sci. Eng., 2010, A527: 2738
31 Mo Y K, Zhang Z H, Fu H D, et al. Effects of deformation temperature on the microstructure, ordering and mechanical properties of Fe-6.5wt% Si alloy with columnar grains [J]. Mater. Sci. Eng., 2014, A594: 111
32 Li H, Liang Y F, Yang W, et al. Disordering induced work softening of Fe-6.5wt%Si alloy during warm deformation [J]. Mater. Sci. Eng., 2015, A628: 262
33 Wang X L, Li H Z, Zhang W N, et al. The work softening by deformation-induced disordering and cold rolling of 6.5 wt pct Si steel thin sheets [J]. Metall. Mater. Trans., 2016, 47A: 4659
34 Raviprasad K, Aoki K, Chattopadhyay K. The nature of dislocations and effect of order in rapidly solidified Fe-(5.5-7.5)wt. %Si alloys [J]. Mater. Sci. Eng., 1993, A172: 125
35 Mao W M, Yang P. Influence of structure transition on plastic behaviors of iron based ordered alloys [J]. Sci. China Technol. Sci., 2012, 55: 2920
doi: 10.1007/s11431-012-4947-x
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[6] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[7] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[8] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[9] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[10] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[11] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[12] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[13] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[14] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[15] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
No Suggested Reading articles found!