Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (7): 778-786    DOI: 10.11900/0412.1961.2015.00625
Orginal Article Current Issue | Archive | Adv Search |
TEMPERED MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AUSTEMPERED LOW ALLOYED BAINITIC DUCTILE IRON
Junjun CUI1,Liqing CHEN1(),Haizhi LI2,Weiping TONG2
1 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China.
2 Key Laboratory for Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.
Cite this article: 

Junjun CUI,Liqing CHEN,Haizhi LI,Weiping TONG. TEMPERED MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AUSTEMPERED LOW ALLOYED BAINITIC DUCTILE IRON. Acta Metall Sin, 2016, 52(7): 778-786.

Download:  HTML  PDF(1326KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Austempered bainitic ductile iron has been widely used in machinery components and parts due to its low fabrication cost, excellent mechanical properties, and abrasive wear resistance. In order to get a fine bainitic matrix, austempering process is usually adopted which consists of austenitizing temperature, austempering temperature and time. For quenched ductile cast iron, tempering plays an important role in subsequent heat treatment process. However, less attention has been paid on the microstructural evolution and mechanical properties of the austempered bainitic ductile iron after tempering treatment. Thus, in this work, 3.55C-1.95Si-0.36Mn-3.58Ni-0.708Cu-0.92Mo-0.65Cr (mass fraction, %) bainitic ductile iron was subjected to austempering and subsequent tempering treatment, and the effect of tempering on microstructures and properties has been investigated by using OM, EP MA, SEM, TEM and XRD. The microstructural evolution during tempering has been investigated, and mechanical properties and wear resistance have also been measured and analyzed. The results show that microstructural evolution of the bainitic ductile iron during tempering contains recovery and recrystallization softening processes of twin martensite and dislocation substructure, decomposition of retained austenite, dissolution of supersaturated carbon and phase transformation in martensite and transformation in eutectic cementite. With increasing tempering temperature, there is a gradual decrease in micro- and macro-hardness of substrate microstructure and compressive strength of austempered low alloyed bainitic ductile iron. When the bainitic ductile iron was tempered at 450 ℃, the eutectic cementite has the lowest micro-hardness value due to the precipitation of α phase in its slice layer and the compressive ratio is thus higher. The mechanical properties of the austempered low alloyed bainitic ductile iron was even worse when tempered at 600 ℃. Under the wear condition of dry sand/rubber wheel, the austempered low alloyed bainitic ductile iron possesses the best wear resistance when tempered at 450 ℃. The worn morphology observation by SEM indicates that the worn surfaces were caused by plastic deformation and micro-cutting. The plastic deformation plays an important role in wear process, while the precipitated and finely distributed Mo2C contributes a lot to the improvement of wear resistance when tempered at 450 ℃.

Key words:  bainitic ductile iron      austempering      tempering treatment      microstructural evolution      mechanical property      wear mechanism     
Received:  03 December 2015     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00625     OR     https://www.ams.org.cn/EN/Y2016/V52/I7/778

Fig.1  Schematic of isothermal quenching (IQ) and subsequent tempering (T) treatments for low alloyed bainitic ductile iron
Fig.2  OM image of low alloyed bainitic ductile iron with IQ heat treatment (A—retained austenite, M—martensite, B—bainite, Gr—graphite)
Fig.3  Low (a) and high magnified (b) TEM images of martensite of low alloyed austempered bainite ductile iron (Inset in Fig.3a show the selected area electron diffraction (SAED) pattern along [110] zone axis, T—twin crystal)
Fig.4  OM images of austempered low alloyed bainitic ductile iron after tempering at 300 ℃ (a), 450 ℃ (b) and 600 ℃ (c)
Fig.5  XRD spectra of the low alloyed bainitic ductile iron after IQ and IQ-T treatments
Fig.6  TEM images and SAED patterns (insets) of austempered bainitic ductile iron after tempering at 300 ℃ (a), 450 ℃ (b) and 600 ℃ (c)
Process Macro-hardness of substrate / HV Macro-hardness of cementite / HV Hardness
HRC
Compressive strength / MPa Compressive ratio / %
IQ 571.3 1045.5 56.8 2320 18.0
IQ-T-300 619.6 906.5 54.9 2390 21.1
IQ-T-450 540.0 746.9 51.3 2300 26.7
IQ-T-600 452.4 954.7 47.4 1890 18.5
Table 1  Mechanical properties of the low alloyed bainitic ductile iron with IQ and IQ-T treatments
Process Weight loss / g Wear resistance / g-1
IQ 0.8212 1.2200
IQ-T-300 1.0944 0.9137
IQ-T-450 0.5408 1.8500
IQ-T-600 1.2406 0.8060
Table 2  Wear resistance of low alloyed bainitic ductile iron with IQ and IQ-T treatments
Fig.7  TEM image of austempered low alloyed bainitic ductile iron after tempering at 450 ℃ (F—acicular ferrite)
Fig.8  SEM image of cementite in the low alloyed bainite ductile iron after tempering at 450 ℃
Fig.9  SEM worn surface images of the low alloyed bainitic ductile iron after IQ (a) and tempering at 300 ℃ (b), 450 ℃ (c) and 600 ℃ (d)
[1] Murcia S C, Paniagua M A, Ossa E A.Mater Sci Eng, 2013; A566: 8
[2] Pal S, Daniel T, Farjoo M.Int J Fatigue, 2013; 52: 144
[3] Laino S, Sikora J A, Dommarco R C.Wear, 2008; 265: 1
[4] Sun T, Song R B, Yang F Q, Li Y P, Wu C J.Acta Metall Sin, 2014; 50: 1327
[4] (孙挺, 宋仁伯, 杨富强, 李亚萍, 吴春京. 金属学报, 2014; 50: 1327)
[5] Zhang J W, Zhang N, Zhang M T, Lu L T, Zeng D F, Song Q P.Mater Lett, 2014; 119: 47
[6] Sohi M H, Ahmadabadi M N, Vahdat A B.J Mater Process Technol, 2004; 153: 203
[7] Zhou R, Jiang Y H, Lu D H, Zhou R F, Li Z H.Wear, 2001; 250: 529
[8] Kim Y J, Shin Y, Park H, Lim J D.Mater Lett, 2008; 62: 357
[9] Basso A, Martínez R, Sikora J.Mater Sci Technol, 2007; 23: 1321
[10] Erdogan M, Cerah M, Kocatepe K.Int J Cast Met Res, 2006; 19: 248
[11] Panda R K, Dhal J P, Mishra S C, Sen S.Int J Curr Res Rev, 2012; 4: 16
[12] Janowak J F, Norton P A.Am Foundry Soc, 1985; 88: 123
[13] Bakhtiari R, Ekrami A.Mater Sci Eng, 2009; A525: 159
[14] Zhao Z K, Sun Q Z, Zhu J X.Heat Treat Met, 2002; 27(4): 29
[14] (赵中魁, 孙清洲, 朱君贤. 金属热处理, 2002; 27(4): 29)
[15] Rashidi A M, Moshrefi-Torbati M.Mater Lett, 2000; 45: 203
[16] Cui J J, Zhang H Y, Chen L Q, Li H Z, Tong W P.Acta Metall Sin (Engl Lett), 2014; 27: 476
[17] Chi H X, Ma D S, Wang C, Chen Z Z, Yong Q L.Acta Metall Sin, 2010; 46: 1181
[17] (迟宏宵, 马党参, 王昌, 陈再枝, 雍岐龙. 金属学报, 2010; 46: 1181)
[18] Zhang K, Yong Q L, Sun X J, Li Z D, Zhao P L, Chen S D.Acta Metall Sin, 2014; 50: 913
[18] (张可, 雍岐龙, 孙新军, 李昭东, 赵培林, 陈守东. 金属学报, 2014; 50: 913)
[19] Wang L J, Cai Q W, Wu H B, Yu W.J Univ Sci Technol Beijing, 2010; 32: 1150
[19] (王立军, 蔡庆伍, 武会宾, 余伟. 北京科技大学学报, 2010; 32: 1150)
[20] Chen W, Li L, Fei Y, Wang P, Sun Z Q.Acta Metall Sin, 2009; 45: 256
[20] (陈伟, 李龙, 飞杨, 王朋, 孙祖庆. 金属学报, 2009; 45: 256)
[21] Yang F B, Bai B Z, Liu D Y, Chang K D, Wei D Y, Fang H S.Acta Metall Sin, 2004; 40: 296
[21] (杨福宝, 白秉哲, 刘东雨, 常开地, 韦东远, 方鸿生. 金属学报, 2004; 40: 296)
[22] Liu Q D, Liu W Q, Wang Z M, Zhou B X.Acta Metall Sin, 2009; 45: 1281
[22] (刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报, 2009; 45: 1281)
[23] Zhu X D, Li C J, Zhang S H, Zou M, Su S H.Acta Metall Sin, 1998; 34: 31
[23] (朱晓东, 李承基, 章守华, 邹明, 苏世怀. 金属学报, 1998; 34: 31)
[24] Fridberg J, Hillert M.Acta Metall, 1970; 18: 1253
[25] Abedi H R, Fareghi A, Saghafian H, Kheirandish S H.Wear, 2010; 268: 622
[26] Slatter T, Lewis R, Jones A H.Wear, 2011; 271: 1481
[27] Efremenko V G, Shimizu K, Noguchi T, Efremenko A V, Chabak Y G.Wear, 2013; 305: 155
[28] Cardoso P H S, Israel C L, Strohaecker T R.Wear, 2014; 313: 29
[29] Zhang J W, Zhang N, Zhang M T, Zeng D F, Song Q P, Lu L T.Wear, 2014; 318: 62
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[11] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[12] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[13] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[14] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!