Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (7): 778-786    DOI: 10.11900/0412.1961.2015.00625
Orginal Article Current Issue | Archive | Adv Search |
TEMPERED MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AUSTEMPERED LOW ALLOYED BAINITIC DUCTILE IRON
Junjun CUI1,Liqing CHEN1(),Haizhi LI2,Weiping TONG2
1 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China.
2 Key Laboratory for Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.
Download:  HTML  PDF(1326KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Austempered bainitic ductile iron has been widely used in machinery components and parts due to its low fabrication cost, excellent mechanical properties, and abrasive wear resistance. In order to get a fine bainitic matrix, austempering process is usually adopted which consists of austenitizing temperature, austempering temperature and time. For quenched ductile cast iron, tempering plays an important role in subsequent heat treatment process. However, less attention has been paid on the microstructural evolution and mechanical properties of the austempered bainitic ductile iron after tempering treatment. Thus, in this work, 3.55C-1.95Si-0.36Mn-3.58Ni-0.708Cu-0.92Mo-0.65Cr (mass fraction, %) bainitic ductile iron was subjected to austempering and subsequent tempering treatment, and the effect of tempering on microstructures and properties has been investigated by using OM, EP MA, SEM, TEM and XRD. The microstructural evolution during tempering has been investigated, and mechanical properties and wear resistance have also been measured and analyzed. The results show that microstructural evolution of the bainitic ductile iron during tempering contains recovery and recrystallization softening processes of twin martensite and dislocation substructure, decomposition of retained austenite, dissolution of supersaturated carbon and phase transformation in martensite and transformation in eutectic cementite. With increasing tempering temperature, there is a gradual decrease in micro- and macro-hardness of substrate microstructure and compressive strength of austempered low alloyed bainitic ductile iron. When the bainitic ductile iron was tempered at 450 ℃, the eutectic cementite has the lowest micro-hardness value due to the precipitation of α phase in its slice layer and the compressive ratio is thus higher. The mechanical properties of the austempered low alloyed bainitic ductile iron was even worse when tempered at 600 ℃. Under the wear condition of dry sand/rubber wheel, the austempered low alloyed bainitic ductile iron possesses the best wear resistance when tempered at 450 ℃. The worn morphology observation by SEM indicates that the worn surfaces were caused by plastic deformation and micro-cutting. The plastic deformation plays an important role in wear process, while the precipitated and finely distributed Mo2C contributes a lot to the improvement of wear resistance when tempered at 450 ℃.

Key words:  bainitic ductile iron      austempering      tempering treatment      microstructural evolution      mechanical property      wear mechanism     
Received:  03 December 2015     

Cite this article: 

Junjun CUI,Liqing CHEN,Haizhi LI,Weiping TONG. TEMPERED MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AUSTEMPERED LOW ALLOYED BAINITIC DUCTILE IRON. Acta Metall Sin, 2016, 52(7): 778-786.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00625     OR     https://www.ams.org.cn/EN/Y2016/V52/I7/778

Fig.1  Schematic of isothermal quenching (IQ) and subsequent tempering (T) treatments for low alloyed bainitic ductile iron
Fig.2  OM image of low alloyed bainitic ductile iron with IQ heat treatment (A—retained austenite, M—martensite, B—bainite, Gr—graphite)
Fig.3  Low (a) and high magnified (b) TEM images of martensite of low alloyed austempered bainite ductile iron (Inset in Fig.3a show the selected area electron diffraction (SAED) pattern along [110] zone axis, T—twin crystal)
Fig.4  OM images of austempered low alloyed bainitic ductile iron after tempering at 300 ℃ (a), 450 ℃ (b) and 600 ℃ (c)
Fig.5  XRD spectra of the low alloyed bainitic ductile iron after IQ and IQ-T treatments
Fig.6  TEM images and SAED patterns (insets) of austempered bainitic ductile iron after tempering at 300 ℃ (a), 450 ℃ (b) and 600 ℃ (c)
Process Macro-hardness of substrate / HV Macro-hardness of cementite / HV Hardness
HRC
Compressive strength / MPa Compressive ratio / %
IQ 571.3 1045.5 56.8 2320 18.0
IQ-T-300 619.6 906.5 54.9 2390 21.1
IQ-T-450 540.0 746.9 51.3 2300 26.7
IQ-T-600 452.4 954.7 47.4 1890 18.5
Table 1  Mechanical properties of the low alloyed bainitic ductile iron with IQ and IQ-T treatments
Process Weight loss / g Wear resistance / g-1
IQ 0.8212 1.2200
IQ-T-300 1.0944 0.9137
IQ-T-450 0.5408 1.8500
IQ-T-600 1.2406 0.8060
Table 2  Wear resistance of low alloyed bainitic ductile iron with IQ and IQ-T treatments
Fig.7  TEM image of austempered low alloyed bainitic ductile iron after tempering at 450 ℃ (F—acicular ferrite)
Fig.8  SEM image of cementite in the low alloyed bainite ductile iron after tempering at 450 ℃
Fig.9  SEM worn surface images of the low alloyed bainitic ductile iron after IQ (a) and tempering at 300 ℃ (b), 450 ℃ (c) and 600 ℃ (d)
[1] Murcia S C, Paniagua M A, Ossa E A.Mater Sci Eng, 2013; A566: 8
[2] Pal S, Daniel T, Farjoo M.Int J Fatigue, 2013; 52: 144
[3] Laino S, Sikora J A, Dommarco R C.Wear, 2008; 265: 1
[4] Sun T, Song R B, Yang F Q, Li Y P, Wu C J.Acta Metall Sin, 2014; 50: 1327
[4] (孙挺, 宋仁伯, 杨富强, 李亚萍, 吴春京. 金属学报, 2014; 50: 1327)
[5] Zhang J W, Zhang N, Zhang M T, Lu L T, Zeng D F, Song Q P.Mater Lett, 2014; 119: 47
[6] Sohi M H, Ahmadabadi M N, Vahdat A B.J Mater Process Technol, 2004; 153: 203
[7] Zhou R, Jiang Y H, Lu D H, Zhou R F, Li Z H.Wear, 2001; 250: 529
[8] Kim Y J, Shin Y, Park H, Lim J D.Mater Lett, 2008; 62: 357
[9] Basso A, Martínez R, Sikora J.Mater Sci Technol, 2007; 23: 1321
[10] Erdogan M, Cerah M, Kocatepe K.Int J Cast Met Res, 2006; 19: 248
[11] Panda R K, Dhal J P, Mishra S C, Sen S.Int J Curr Res Rev, 2012; 4: 16
[12] Janowak J F, Norton P A.Am Foundry Soc, 1985; 88: 123
[13] Bakhtiari R, Ekrami A.Mater Sci Eng, 2009; A525: 159
[14] Zhao Z K, Sun Q Z, Zhu J X.Heat Treat Met, 2002; 27(4): 29
[14] (赵中魁, 孙清洲, 朱君贤. 金属热处理, 2002; 27(4): 29)
[15] Rashidi A M, Moshrefi-Torbati M.Mater Lett, 2000; 45: 203
[16] Cui J J, Zhang H Y, Chen L Q, Li H Z, Tong W P.Acta Metall Sin (Engl Lett), 2014; 27: 476
[17] Chi H X, Ma D S, Wang C, Chen Z Z, Yong Q L.Acta Metall Sin, 2010; 46: 1181
[17] (迟宏宵, 马党参, 王昌, 陈再枝, 雍岐龙. 金属学报, 2010; 46: 1181)
[18] Zhang K, Yong Q L, Sun X J, Li Z D, Zhao P L, Chen S D.Acta Metall Sin, 2014; 50: 913
[18] (张可, 雍岐龙, 孙新军, 李昭东, 赵培林, 陈守东. 金属学报, 2014; 50: 913)
[19] Wang L J, Cai Q W, Wu H B, Yu W.J Univ Sci Technol Beijing, 2010; 32: 1150
[19] (王立军, 蔡庆伍, 武会宾, 余伟. 北京科技大学学报, 2010; 32: 1150)
[20] Chen W, Li L, Fei Y, Wang P, Sun Z Q.Acta Metall Sin, 2009; 45: 256
[20] (陈伟, 李龙, 飞杨, 王朋, 孙祖庆. 金属学报, 2009; 45: 256)
[21] Yang F B, Bai B Z, Liu D Y, Chang K D, Wei D Y, Fang H S.Acta Metall Sin, 2004; 40: 296
[21] (杨福宝, 白秉哲, 刘东雨, 常开地, 韦东远, 方鸿生. 金属学报, 2004; 40: 296)
[22] Liu Q D, Liu W Q, Wang Z M, Zhou B X.Acta Metall Sin, 2009; 45: 1281
[22] (刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报, 2009; 45: 1281)
[23] Zhu X D, Li C J, Zhang S H, Zou M, Su S H.Acta Metall Sin, 1998; 34: 31
[23] (朱晓东, 李承基, 章守华, 邹明, 苏世怀. 金属学报, 1998; 34: 31)
[24] Fridberg J, Hillert M.Acta Metall, 1970; 18: 1253
[25] Abedi H R, Fareghi A, Saghafian H, Kheirandish S H.Wear, 2010; 268: 622
[26] Slatter T, Lewis R, Jones A H.Wear, 2011; 271: 1481
[27] Efremenko V G, Shimizu K, Noguchi T, Efremenko A V, Chabak Y G.Wear, 2013; 305: 155
[28] Cardoso P H S, Israel C L, Strohaecker T R.Wear, 2014; 313: 29
[29] Zhang J W, Zhang N, Zhang M T, Zeng D F, Song Q P, Lu L T.Wear, 2014; 318: 62
[1] ZHU Wenting, CUI Junjun, CHEN Zhenye, FENG Yang, ZHAO Yang, CHEN Liqing. Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness[J]. 金属学报, 2021, 57(3): 340-352.
[2] GAO Yihan, LIU Gang, SUN Jun. Recent Progress in High-Temperature Resistant Aluminum-Based Alloys: Microstructural Design and Precipitation Strategy[J]. 金属学报, 2021, 57(2): 129-149.
[3] ZHENG Qiuju, YE Zhongfei, JIANG Hongxiang, LU Ming, ZHANG Lili, ZHAO Jiuzhou. Effect of Micro-Alloying Element La on Solidification Microstructure and Mechanical Properties of Hypoeutectic Al-Si Alloys[J]. 金属学报, 2021, 57(1): 103-110.
[4] BI Sheng, LI Zechen, SUN Haixia, SONG Baoyong, LIU Zhenyu, XIAO Bolv, MA Zongyi. Microstructure and Mechanical Properties of Carbon Nanotubes-Reinforced 7055Al Composites Fabricated by High-Energy Ball Milling and Powder Metallurgy Processing[J]. 金属学报, 2021, 57(1): 71-81.
[5] WANG Mingkang, YUAN Junhao, LIU Yufeng, WANG Qing, DONG Chuang, ZHANG Zhongwei. Effect of Ti on β Structural Stability and Mechanical Properties of Zr-Nb Binary Alloys[J]. 金属学报, 2021, 57(1): 95-102.
[6] LI Tianxin, LU Yiping, CAO Zhiqiang, WANG Tongmin, LI Tingju. Opportunity and Challenge of Refractory High-Entropy Alloys in the Field of Reactor Structural Materials[J]. 金属学报, 2021, 57(1): 42-54.
[7] LIN Zhangqian, ZHENG Wei, LI Hao, WANG Dongjun. Microstructures and Mechanical Properties of TA15 Titanium Alloy and Graphene Reinforced TA15 Composites Prepared by Spark Plasma Sintering[J]. 金属学报, 2021, 57(1): 111-120.
[8] ZHANG Maolong, LU Yanhong, CHEN Shenghu, RONG Lijian, LU Hao. Effect of Dilution Ratio of the First 309L Cladding Layer on the Microstructure and Mechanical Properties of Weld Joint of Connecting Pipe-Nozzle to Safe-End in Nuclear Power Plant[J]. 金属学报, 2020, 56(8): 1057-1066.
[9] HAN Baoshuai, WEI Lijun, XU Yanjin, MA Xiaoguang, LIU Yafei, HOU Hongliang. Effect of Pre-Deformation on Microstructure and Mechanical Properties of Ultra-High Strength Al-Zn-Mg-Cu Alloy After Ageing Treatment[J]. 金属学报, 2020, 56(7): 1007-1014.
[10] HE Shuwen, WANG Minghua, BAI Qin, XIA Shuang, ZHOU Bangxin. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide[J]. 金属学报, 2020, 56(7): 1015-1024.
[11] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[12] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[13] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[14] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[15] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
No Suggested Reading articles found!