Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (3): 313-322    DOI: 10.3724/SP.J.1037.2013.00355
Current Issue | Archive | Adv Search |
EFFECTS OF WELDING THERMAL CYCLE AND AGING TREATMENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTY OF A Ni-Fe BASE SUPERALLOY
WU Dong1, WANG Xin1,2, DONG Wenchao1, LU Shanping1()
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 China Academy of Engineering Physics, Mianyang 621900
Cite this article: 

WU Dong, WANG Xin, DONG Wenchao, LU Shanping. EFFECTS OF WELDING THERMAL CYCLE AND AGING TREATMENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTY OF A Ni-Fe BASE SUPERALLOY. Acta Metall Sin, 2014, 50(3): 313-322.

Download:  HTML  PDF(16002KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Increasing the steam temperature and pressure of boilers in super-ultracritical power plant is an important approach to increase the plant efficiency. The steam temperature of the most efficient coal power plant is now around 620 ℃, representing an increase of about 80 ℃ in the past 40 years, which owes to the high temperature properties improvement of boiler components, such as the superheater and the reheater. Nickel base superalloy, for example Inconel 740 and Inconel 617, is being developed by some countries for the material requirement of 700 ℃ super-ultracritical power plants. Meanwhile, weldability investigation is necessary for the developing materials since welding plays a key role on the construction of coal power plant boilers. In this work, the weldability of a kind of Ni-Fe base superalloy, one of the candidate materials for the high temperature components of 700 ℃ ultra-supercritical coal plant is studied. By welding thermal simulator (Gleeble 1500) experiments, the variation and evolution of mechanical properties and microstructure were analyzed for this Ni-Fe base superalloy, under welding thermal cycle treatment condition and aging treatment condition after welding thermal cycle. After the welding thermal cycle with a peak temperature of 1249 ℃, both the yield strength and tensile strength for solutioned Ni-Fe base superalloy at 25 and 700 ℃ were decreased, along with the increasing of ductility. After aging treatment to the Ni-Fe base superalloy experienced a welding thermal cycle, the yield strength and tensile strength at 25 ℃ were similar with those of the aged base metal. At 700 ℃, the strength of the heat affected zone (HAZ) after aging treatment is higher than that of the aged Ni-Fe base superalloy. Microstructure analysis showed that the γ' phase and MC carbide in Ni-Fe base superalloy dissolved during the high temperature welding thermal simulation experimental process. The solution of carbides in the grain boundaries caused a loss of a pinning effect on the migration of grain boundary and a decreasing of the strength. After the aging treatment to the Ni-Fe base superalloy experienced a high temperature welding thermal cycle, γ' and M23C6 carbide were precipitated. The precipitation of M23C6 at the grain boundaries during aging treatment was mainly due to the supply of the carbon from the MC which had been dissolved partially during former welding thermal cycle.

Key words:  Ni-Fe base superalloy      welding thermal cycle      aging      γ'      carbide      mechanical property     
Received:  26 June 2013     
ZTFLH:  TG113.26  
Fund: Supported by High Technology Research and Development Program of China (No.2012AA03A501)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00355     OR     https://www.ams.org.cn/EN/Y2014/V50/I3/313

Fig.1  

焊接过程中热电偶测温位置(A, B和C点)几何示意图

Fig.2  

测温点实测焊接热循环曲线与模拟焊接热循环曲线对比

Fig.3  

模拟和实际焊缝的横截面形貌对比

Fig.4  

沿焊缝横截面硬度分布(硬度测量位置沿图3a焊缝形貌中的白色示意线)

Fig.5  

焊接模型中S'点处的焊接热循环曲线

Fig.6  

焊接热循环前后试样的形貌对比

Fig.7  

Ni-Fe基高温合金固溶态和焊接热循环态下的碳化物和碳氮化物形貌的SEM像

Fig.8  

Ni-Fe基高温合金固溶态和焊接热循环态下的γ'相形貌的SEM像

Fig.9  

Ni-Fe基高温合金固溶态和焊接热循环态下的晶粒形貌

Sample Area percentage of grains with
different sizes
Number percentage of grains with
different sizes
Solution state
75~100 μm, 91.5%;
less than 20 μm, 8.5%
75~100 μm, 43%;
less than 20 μm, 57%
Welding thermal cycle state 75~100 μm, 94.6%;
less than 20 μm, 5.4%
75~100 μm, 54.3%;
less than 20 μm, 45.7%
Table 1  Grain size distribution of Ni-Fe superalloy at solution state and welding thermal cycle state
Sample Temperature / ℃ Rp0.2 / MPa Rm / MPa A / %
Base metal 25
528 990 36.5
HAZ 299 679 39.8
Base metal 700
458 712 20.5
HAZ 253 523 31.1
Table 2  Tensile properties of Ni-Fe base superalloy at 25 and 700 ℃
Fig.10  

固溶态和焊接热循环态拉伸断裂试样

Fig.11  

焊接热循环区中心A点至固溶区母材B点的硬度分布

Fig.12  

Ni-Fe基高温合金母材和HAZ试样在25和700 ℃下的拉伸断口形貌

Fig.13  

Ni-Fe基高温合金HAZ时效后和母材时效后晶界析出相形貌

Fig.14  

Ni-Fe基高温合金焊接热循环区时效后和母材时效后的γ'相形貌

Temperature / ℃ Fracture position Rp0.2 / MPa Rm / MPa A / %
25
Base metal 613 1055 28.0
HAZ 625 1076 27.6
HAZ 632 1078 26.0
700 Base metal 535 780 22.4
Base metal 530 775 21.6
Base metal 545 785 23.2
Table 3  Tensile properties of Ni-Fe base superalloy (containing HAZ) after aging treatment at 25 and 700 ℃
Fig.15  

焊接热循环后时效试样的高低温拉伸断口形貌

[1] Zhang H J, Zhou R C, Hou S F, Guo Y. Proc CSEE, 2011; 31: 108
(张红军, 周荣灿, 侯淑芳, 郭 岩. 中国电机工程学报, 2011; 31: 108)
[2] Bugge J, Kaer S, Blum R. Energy, 2006; 31: 1437
[3] Wang J, Dong J X, Zhang M C, Xie X S. World Iron Steel, 2011; 11(2): 26
(王 珏, 董建新, 张麦仓, 谢锡善. 世界钢铁, 2011; 11(2): 26)
[4] Hu P. Electric Power Construction, 2005; 26(6): 26
(胡 平. 电力建设, 2005; 26(6): 26)
[5] Guo Y, Zhou R C, Hou S F, Zhang H J. Proc CSEE, 2010; 30: 86
(郭 岩, 周荣灿, 侯淑芳, 张红军. 中国电机工程学报, 2010; 30: 86)
[6] Zhao S Q, Xie X S, Smith G D, Patel S J. Mater Des, 2006; 27: 1120
[7] Cowen C J, Danielson P E, Jablonski P D. J Mater Eng Perform, 2011; 20: 1078
[8] Evans N D, Maziasz P J, Swindeman R W, Smith G D. Scr Mater, 2004; 51: 503
[9] Park Y S, Ham H S, Cho S M, Bae D H. In: Guagliano M, Vergani L eds., Proc 11th Int Conf on the Mechanical Behavior of Materials (ICM11), Amsterdam: Elsevier Science BV, 2011: 2645
[10] Mankins W L, Hosier J C, Bassford T H. Metall Mater Trans, 1974; 5B: 2579
[11] Guo J T, Du X K. Acta Metall Sin, 2006; 41: 1221
(郭建亭, 杜秀魁. 金属学报, 2006; 41: 1221)
[12] Masuyama F. ISIJ Int, 2001; 41: 612
[13] Viswanathan R, Bakker W. J Mater Eng Perform, 2001; 10: 81
[14] Shi X. Electr Weld Mach, 2010; 40(2): 4
(史 轩. 电焊机, 2010; 40(2): 4)
[15] Zhong W L,Wang W,Liang Y C,Lin J D,Lin Q R,Liu H W,Yu Y R. High Temperature Steam Oxidation of Supercritical Plant Metal. Beijing: China Electric Power Press, 2010: 30
(钟万里,王 伟,梁永纯,林介东,林清如,刘洪文,虞月荣. 超临界机组金属高温蒸汽氧化. 北京: 中国电力出版社, 2010: 30)
[16] Ramirez J E. Weld J, 2012; 91: 122
[17] Mo W L, Lu S P, Li D Z, Li Y Y. J Mater Sci Technol, 2013; 29: 458
[18] Mo W L, Lu S P, Li D Z, Li Y Y. Mater Sci Eng, 2013; A582: 326
[19] Xu S, Dickson J I, Koul A K. Metall Mater Trans, 1998; 29A: 2687
[20] Shulga A V. J Alloys Compd, 2007; 436: 155
[21] Li Y Q,Liu J Y. Interstitial Phase of Superalloy. Beijing: Metallurgical Industry Press, 1990: 276
(李玉清,刘锦岩. 高温合金间隙相. 北京: 冶金工业出版社, 1990: 276)
[22] Richards N L, Chaturvedi M C. Int Mater Rev, 2000; 45: 109
[23] Hu R, Bai G H, Li J S, Zhang J Q, Zhang T B, Fu H Z. Mater Sci Eng, 2012; A548: 83
[24] Jena A K, Chaturvedi M C. J Mater Sci, 1984; 19: 3121
[25] Garosshen T J, Mccarthy G P. Metall Trans, 1985; 16A: 1213
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[11] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[12] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[13] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[14] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[15] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
No Suggested Reading articles found!