Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (5): 636-646    DOI: 10.11900/0412.1961.2021.00599
Current Issue | Archive | Adv Search |
Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel
WANG Bin1, NIU Mengchao2, WANG Wei3(), JIANG Tao4(), LUAN Junhua5, YANG Ke3
1Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
2Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
3Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
5Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
Cite this article: 

WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel. Acta Metall Sin, 2023, 59(5): 636-646.

Download:  HTML  PDF(5128KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

An increase in strength often leads to a decrease in the ductility and toughness of maraging stainless steels; this phenomenon is known as the strength-ductility/toughness trade-off dilemma in structural materials. Some studies have found that the introduction of submicro/nanometer-sized retained or reverted austenite could mitigate the strength-ductility/toughness trade-off of high-strength maraging stainless steels. In this work, a novel strategy to accelerate austenite reversion by Cu addition in a Fe-Ni-Mo-Co-Cr maraging stainless steel was studied. In addition, the aging behavior and its effects on the mechanical properties of a Cu-containing Fe-Cr-Co-Ni-Mo maraging stainless steel were systematically studied. Transmission electron microscope characterizations showed that Cu- and Mo-rich phases precipitated from the steel matrix in sequence during the aging process; more specifically, a part of Mo-rich phase nucleated at the Cu-rich phase and then grew. Moreover, along with the segregation of Cu and Ni, reverted austenite was formed gradually. With an increase in the aging time, the stability of the reverted austenite increased, resulting in a substantial increase in its toughness. After aging for 90 h, the yield and tensile strengths of the steel reached 1270 and 1495 MPa, respectively, and the impact energy and fracture toughness were 81 J and 102 MPa·m1/2, respectively, showing an excellent match of strength and toughness compared with commercial maraging stainless steels.

Key words:  maraging stainless steel      reverted austenite      TRIP effect      strength and toughness     
Received:  31 December 2021     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(51201160);Youth Innovation Promotion Association of Chinese Academy of Sciences(2017233)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00599     OR     https://www.ams.org.cn/EN/Y2023/V59/I5/636

Fig.1  Mechanical properties of Cu-contained maraging stainless steel samples as a function of aging time at 480oC
(a) hardness-aging time curve (b) engineering stress-strain curves (WQ—water quenching)
(c) impact energy and fracture toughness under different conditions
(d) typical strength-impact toughness profiles of commercial maraging stainless steels
Fig.2  SEM image of as-quanched Cu-contained maraging stainless steel sample (a) and OM image of the sample aged at 480oC for 0.5 h (b)
Fig.3  Bright-field TEM images of precipitates in the Cu-containing maraging stainless steel aged at 480oC for 0.5 h (a), 24 h (b), 60 h (c), and 90 h (d)
Fig.4  APT characterizations of Fe (a), Ni (b), Mo (c), Cr (d), Co (e), and Cu (f) of the Cu-contained maraging stainless steel sample aged at 480oC for 0.5 h
Color online
Fig.5  High-angle annular dark field (HAADF) image and corresponding EDS elemental mapping of the Cu-contained maraging stainless steel sample aged at 480oC for 60 h
Color online
Fig.6  HAADF image, corresponding EDS elemental mapping and line scan spectra of the Cu-contained maraging stainless steel sample aged at 480oC for 90 h
Color online
(a) HAADF image (b) corresponding EDS elemental mapping of Ni, Cu, and Mo, respectively
(c, d) corresponding line scan spectra taken from Fig.6b
Fig.7  XRD spectra (a) and volume fractions of reverted austenite (b) of Cu-contained maraging stainless steel samples aged at 480oC for different time
Fig.8  Bright-field TEM images of reverted austenite in the Cu-contained maraging stainless steel samples aged at 480oC for 0.5 h (a), 24 h (b), 60 h (c), and 90 h (d) (Inset in Fig.8b shows the corresponding SAED pattern, indicating the Nishiyama-Wasserman relationship of reverted austenite and matensite. M represents martensite)
Fig.9  HAADF image and corresponding EDS elemental mapping of reverted austenite in the Cu-contained maraging stainless steel sample aged at 480oC for 90 h
Color online
Time / hCuNi
01.02 ± 0.028.23 ± 0.16
241.07 ± 0.0110.36 ± 0.32
601.10 ± 0.0516.15 ± 0.37
901.15 ± 0.0217.89 ± 0.32
Table 1  Mass fractions of Cu and Ni in reverted austenite after aging for different time
Fig.10  SEM and EBSD images taken close to the impact fracture site and the undeformed matrix of Cu-contained maraging stainless steel samples aged at 480oC for 60 h (a1-a4) and 90 h (b1-b4) (a1, b1) SEM images taken from the longitudinal section of the impact fractured samples (a2, a3, b2, b3) EBSD images taken close to the impact fracture sites in Figs.9a1 and a2, respectively (a4, b4) EBSD images adjacent to the undeformed matrix
Color online
Fig.11  Schematics of the co-precipitation processes in the Cu-contained maraging stainless steel sample
Color online
1 Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
2 Hättestrand M, Nilsson J O, Stiller K, et al. Precipitation hardening in 12%Cr-9%Ni-4%Mo-2%Cu stainless steel[J]. Acta Mater., 2004, 52: 1023
doi: 10.1016/j.actamat.2003.10.048
3 Yang K, Niu M C, Tian J L, et al. Research and development of maraging stainless steel used for new generation landing gear[J]. Acta Metall. Sin., 2018, 54: 1567
doi: 10.11900/0412.1961.2018.00356
杨 柯, 牛梦超, 田家龙 等. 新一代飞机起落架用马氏体时效不锈钢的研究[J]. 金属学报, 2018, 54: 1567
4 Luo H W, Shen G H. Progress and perspective of ultra-high strength steels having high toughness[J]. Acta Metall. Sin., 2020, 56: 494
罗海文, 沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56: 494
5 Liu Z B, Liang J X, Su J, et al. Research and application progress in ultra-high strength stainless steel[J]. Acta Metall. Sin., 2020, 56: 549
刘振宝, 梁剑雄, 苏 杰 等. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56: 549
doi: 10.11900/0412.1961.2019.00453
6 Dong H. Year 2020: 200th anniversary for alloy steel—Preword of special issue for alloy steel[J]. Acta Metall. Sin., 2020, 56: I
董 瀚. 2020年: 合金钢200周年——“合金钢专刊”前言[J]. 金属学报, 2020, 56: I
7 Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Mater., 2003, 51: 2611
doi: 10.1016/S1359-6454(03)00059-4
8 Tian Y Q, Zhang H J, Chen L S, et al. Effect of alloy elements partitioning behavior on retained austenite and mechanical property in low carbon high strength steel[J]. Acta Metall. Sin., 2014, 50: 531
doi: 10.3724/SP.J.1037.2013.00709
田亚强, 张宏军, 陈连生 等. 低碳高强钢合金元素配分行为对残余奥氏体和力学性能的影响[J]. 金属学报, 2014, 50: 531
doi: 10.3724/SP.J.1037.2013.00709
9 Kong H J, Yang T, Chen R, et al. Breaking the strength-ductility paradox in advanced nanostructured Fe-based alloys through combined Cu and Mn additions[J]. Scr. Mater., 2020, 186: 213
doi: 10.1016/j.scriptamat.2020.05.008
10 Li Y, Li W, Liu W Q, et al. The austenite reversion and co-precipitation behavior of an ultra-low carbon medium manganese quenching-partitioning-tempering steel[J]. Acta Mater., 2018, 146: 126
doi: 10.1016/j.actamat.2017.12.035
11 Cao H W, Luo X H, Zhan G F, et al. Effect of intercritical quenching on the microstructure and cryogenic mechanical properties of a 7 pct Ni steel[J]. Metall. Mater. Trans., 2017, 48A: 4403
12 Zhang H L, Sun M Y, Liu Y X, et al. Ultrafine-grained dual-phase maraging steel with high strength and excellent cryogenic toughness[J]. Acta Mater., 2021, 211: 116878
doi: 10.1016/j.actamat.2021.116878
13 He Y, Yang K, Sha W. Microstructure and mechanical properties of a 2000 MPa grade Co-free maraging steel[J]. Metall. Mater. Trans., 2005, 36A: 2273
14 Raabe D, Ponge D, Dmitrieva O, et al. Nanoprecipitate-hardened 1.5 GPa steels with unexpected high ductility[J]. Scr. Mater., 2009, 60: 1141
doi: 10.1016/j.scriptamat.2009.02.062
15 Niu M C, Yang K, Luan J H, et al. Cu-assisted austenite reversion and enhanced TRIP effect in maraging stainless steels[J]. J. Mater. Sci. Technol., 2022, 104: 52
doi: 10.1016/j.jmst.2021.06.055
16 Seko A, Nishitani S R, Tanaka I, et al. First-principles calculation on free energy of precipitate nucleation[J]. Calphad, 2004, 28: 173
doi: 10.1016/j.calphad.2004.07.003
17 Liang J X, Liu Z B, Yang Z Y. Development and application of high strength stainless steel[J]. Aerosp. Mater. Technol., 2013, 43: 1
梁剑雄, 刘振宝, 杨志勇. 高强不锈钢的发展与应用技术[J]. 宇航材料工艺, 2013, 43: 1
18 Kuehmann C, Tufts B, Trester P. Computational design for ultra high-strength alloy[J]. Adv. Mater. Process., 2008, 166: 37
19 Xiang S, Wang J P, Sun Y L, et al. Effect of ageing process on mechanical properties of martensite precipitation-hardening stainless steel[J]. Adv. Mater. Res., 2011, 146-147: 382
20 Couturier L, De Geuser F, Descoins M, et al. Evolution of the microstructure of a 15-5PH martensitic stainless steel during precipitation hardening heat treatment[J]. Mater. Des., 2016, 107: 416
doi: 10.1016/j.matdes.2016.06.068
21 Habibi-Bajguirani H R, Jenkins M L. High-resolution electron microscopy analysis of the structure of copper precipitates in a martensitic stainless steel of type PH 15-5[J]. Philos. Mag. Lett., 1996, 73: 155
doi: 10.1080/095008396180786
22 Salje G, Feller-Kniepmeier M. The diffusion and solubility of copper in iron[J]. J. Appl. Phys., 48: 1833
23 Nitta H, Yamamoto T, Kanno R, et al. Diffusion of molybdenum in α-iron[J]. Acta Mater., 2002, 50: 4117
doi: 10.1016/S1359-6454(02)00229-X
24 Cracknell A, Petch N J. Frictional forces on dislocation arrays at the lower yield point in iron[J]. Acta Metall., 1955, 3: 186
doi: 10.1016/0001-6160(55)90090-0
25 Han G, Xie Z J, Li Z Y, et al. Evolution of crystal structure of Cu precipitates in a low carbon steel[J]. Mater. Des., 2017, 135: 92
doi: 10.1016/j.matdes.2017.08.054
26 Niu M C, Zhou G, Wang W, et al. Precipitate evolution and strengthening behavior during aging process in a 2.5 GPa grade maraging steel[J]. Acta Mater., 2019, 179: 296
doi: 10.1016/j.actamat.2019.08.042
27 Kong H J, Xu C, Bu C C, et al. Hardening mechanisms and impact toughening of a high-strength steel containing low Ni and Cu additions[J]. Acta Mater., 2019, 172: 150
doi: 10.1016/j.actamat.2019.04.041
28 Fahr D. Stress- and strain-induced formation of martensite and its effects on strength and ductility of metastable austenitic stainless steels[J]. Metall. Mater. Trans., 1971, 2B: 1883
29 Jimenez-Melero E, Van Dijk N H, Zhao L, et al. Characterization of individual retained austenite grains and their stability in low-alloyed TRIP steels[J]. Acta Mater., 2007, 55: 6713
doi: 10.1016/j.actamat.2007.08.040
30 Lacroix G, Pardoen T, Jacques P J. The fracture toughness of TRIP-assisted multiphase steels[J]. Acta Mater., 2008, 56: 3900
doi: 10.1016/j.actamat.2008.04.035
31 Luo H W, Wang X H, Liu Z B, et al. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel[J]. J. Mater. Sci. Technol., 2020, 51: 130
doi: 10.1016/j.jmst.2020.04.001
32 Shu D L. Mechanical Properties of Engineering Materials[M]. 3rd Ed., Beijing: China Machine Press, 2016: 73
束德林. 工程材料力学性能[M]. 第3版, 北京: 机械工业出版社, 2016: 73
[1] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[2] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[3] YANG Rui, MA Yingjie, LEI Jiafeng, HU Qingmiao, HUANG Sensen. Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure[J]. 金属学报, 2021, 57(11): 1455-1470.
[4] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[5] Miao JIN, Wenquan LI, Shuo HAO, Ruixue MEI, Na LI, Lei CHEN. Effect of Solution Temperature on Tensile Deformation Behavior of Mn-N Bearing Duplex Stainless Steel[J]. 金属学报, 2019, 55(4): 436-444.
[6] Yaqiang TIAN,Geng TIAN,Xiaoping ZHENG,Liansheng CHEN,Yong XU,Shihong ZHANG. C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. 金属学报, 2019, 55(3): 332-340.
[7] CHEN Lei, HAO Shuo, ZOU Zongyuan, HAN Shuting, ZHANG Rongqiang, GUO Baofeng. Mechanical Characteristics of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si During Cyclic Deformation[J]. 金属学报, 2019, 55(12): 1495-1502.
[8] CHEN Lei , HAO Shuo , MEI Ruixue , JIA Wei , LI Wenquan , GUO Baofeng . Intrinsic Increment of Plasticity Induced by TRIP and Its Dependence on the Annealing Temperature in a Lean Duplex Stainless Steel[J]. 金属学报, 2019, 55(11): 1359-1366.
[9] Feng YANG, Haiwen LUO, Han DONG. Effects of Intercritical Annealing Temperature on the Tensile Behavior of Cold Rolled 7Mn Steel and the Constitutive Modeling[J]. 金属学报, 2018, 54(6): 859-867.
[10] Ke YANG, Mengchao U, Jialong AN, Wei NG. Research and Development of Maraging Stainless Steel Used for New Generation Landing Gear[J]. 金属学报, 2018, 54(11): 1567-1585.
[11] Kai ZHU, Cuilan WU, Pan XIE, Mei HAN, Yuanrui LIU, Xiangge ZHANG, Jianghua CHEN. Microstructure and Mechanical Properties of an Austenite/Ferrite Laminate Structured High-Manganese Steel[J]. 金属学报, 2018, 54(10): 1387-1398.
[12] Changjun WANG,Jianxiong LIANG,Zhenbao LIU,Zhiyong YANG,Xinjun SUN,Qilong YONG. EFFECT OF METASTABLE AUSTENITE ON MECHANI-CAL PROPERTY AND MECHANISM IN CRYOGENICSTEEL APPLIED IN OCEANEERING[J]. 金属学报, 2016, 52(4): 385-393.
[13] Jialong TIAN,Yongcan LI,Wei WANG,Wei YAN,Yiyin SHAN,Zhouhua JIANG,Ke YANG. ALLOYING ELEMENT SEGREGATION EFFECT IN A MULTI-PHASE STRENGTHENED MARAGING STAINLESS STEEL[J]. 金属学报, 2016, 52(12): 1517-1526.
[14] Kun LI,Jiguo SHAN,Chunxu WANG,Zhiling TIAN. STRENGTH AND TOUGHNESS OF T250 MARAGING STEEL JOINT HYBRID-TREATED WITH LASER WELDING AND AGING[J]. 金属学报, 2015, 51(8): 904-912.
[15] Tongbang AN,Zhiling TIAN,Jiguo SHAN,Jinshan WEI. EFFECT OF SHIELDING GAS ON MICROSTRUCTURE AND PERFORMANCE OF 1000 MPa GRADE DEPOSITED METALS[J]. 金属学报, 2015, 51(12): 1489-1499.
No Suggested Reading articles found!