Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (3): 313-322    DOI: 10.3724/SP.J.1037.2013.00355
Current Issue | Archive | Adv Search |
WU Dong 1) , WANG Xin 1,2), DONG Wenchao 1), LU Shanping 1)
1) Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) China Academy of Engineering Physics, Mianyang 621900
Download:  HTML  PDF(16002KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Increasing the steam temperature and pressure of boilers in super-ultracritical power plant is an important approach to increase the plant efficiency. The steam temperature of the most efficient coal power plant is now around 620 ℃, representing an increase of about 80 ℃ in the past 40 years, which owes to the high temperature properties improvement of boiler components, such as the superheater and the reheater. Nickel base superalloy, for example Inconel 740 and Inconel 617, is being developed by some countries for the material requirement of 700 ℃ super-ultracritical power plants. Meanwhile, weldability investigation is necessary for the developing materials since welding plays a key role on the construction of coal power plant boilers. In this work, the weldability of a kind of Ni-Fe base superalloy, one of the candidate materials for the high temperature components of 700 ℃ ultra-supercritical coal plant is studied. By welding thermal simulator (Gleeble 1500) experiments, the variation and evolution of mechanical properties and microstructure were analyzed for this Ni-Fe base superalloy, under welding thermal cycle treatment condition and aging treatment condition after welding thermal cycle. After the welding thermal cycle with a peak temperature of 1249 ℃, both the yield strength and tensile strength for solutioned Ni-Fe base superalloy at 25 and 700 ℃ were decreased, along with the increasing of ductility. After aging treatment to the Ni-Fe base superalloy experienced a welding thermal cycle, the yield strength and tensile strength at 25 ℃ were similar with those of the aged base metal. At 700 ℃, the strength of the heat affected zone (HAZ) after aging treatment is higher than that of the aged Ni-Fe base superalloy. Microstructure analysis showed that the γ' phase and MC carbide in Ni-Fe base superalloy dissolved during the high temperature welding thermal simulation experimental process. The solution of carbides in the grain boundaries caused a loss of a pinning effect on the migration of grain boundary and a decreasing of the strength. After the aging treatment to the Ni-Fe base superalloy experienced a high temperature welding thermal cycle, γ' and M23C6 carbide were precipitated. The precipitation of M23C6 at the grain boundaries during aging treatment was mainly due to the supply of the carbon from the MC which had been dissolved partially during former welding thermal cycle.
Key words:  Ni-Fe base superalloy      welding thermal cycle      aging      γ'      carbide      mechanical property     
Received:  26 June 2013     
ZTFLH:  TG113.26  
Fund: Supported by High Technology Research and Development Program of China (No.2012AA03A501)
Corresponding Authors:  LU Shanping, professor, Tel: (024)23971429, E-mail:   
E-mail this article
Add to citation manager
E-mail Alert
Articles by authors

Cite this article: 


URL:     OR

[1] Zhang H J, Zhou R C, Hou S F, Guo Y. Proc CSEE, 2011; 31: 108
(张红军, 周荣灿, 侯淑芳, 郭 岩. 中国电机工程学报, 2011; 31: 108)
[2] Bugge J, Kaer S, Blum R. Energy, 2006; 31: 1437
[3] Wang J, Dong J X, Zhang M C, Xie X S. World Iron Steel, 2011; 11(2): 26
(王 珏, 董建新, 张麦仓, 谢锡善. 世界钢铁, 2011; 11(2): 26)
[4] Hu P. Electric Power Construction, 2005; 26(6): 26
(胡 平. 电力建设, 2005; 26(6): 26)
[5] Guo Y, Zhou R C, Hou S F, Zhang H J. Proc CSEE, 2010; 30: 86
(郭 岩, 周荣灿, 侯淑芳, 张红军. 中国电机工程学报, 2010; 30: 86)
[6] Zhao S Q, Xie X S, Smith G D, Patel S J. Mater Des, 2006; 27: 1120
[7] Cowen C J, Danielson P E, Jablonski P D. J Mater Eng Perform, 2011; 20: 1078
[8] Evans N D, Maziasz P J, Swindeman R W, Smith G D. Scr Mater, 2004; 51: 503
[9] Park Y S, Ham H S, Cho S M, Bae D H. In: Guagliano M, Vergani L eds., Proc 11th Int Conf on the Mechanical Behavior of Materials (ICM11), Amsterdam: Elsevier Science BV, 2011: 2645
[10] Mankins W L, Hosier J C, Bassford T H. Metall Mater Trans, 1974; 5B: 2579
[11] Guo J T, Du X K. Acta Metall Sin, 2006; 41: 1221
(郭建亭, 杜秀魁. 金属学报, 2006; 41: 1221)
[12] Masuyama F. ISIJ Int, 2001; 41: 612
[13] Viswanathan R, Bakker W. J Mater Eng Perform, 2001; 10: 81
[14] Shi X. Electr Weld Mach, 2010; 40(2): 4
(史 轩. 电焊机, 2010; 40(2): 4)
[15] Zhong W L, Wang W, Liang Y C, Lin J D, Lin Q R, Liu H W, Yu Y R. High Temperature Steam Oxidation of Supercritical Plant Metal. Beijing: China Electric Power Press, 2010: 30
(钟万里, 王 伟, 梁永纯, 林介东, 林清如, 刘洪文, 虞月荣. 超临界机组金属高温蒸汽氧化. 北京: 中国电力出版社, 2010: 30)
[16] Ramirez J E. Weld J, 2012; 91: 122
[17] Mo W L, Lu S P, Li D Z, Li Y Y. J Mater Sci Technol, 2013; 29: 458
[18] Mo W L, Lu S P, Li D Z, Li Y Y. Mater Sci Eng, 2013; A582: 326
[19] Xu S, Dickson J I, Koul A K. Metall Mater Trans, 1998; 29A: 2687
[20] Shulga A V. J Alloys Compd, 2007; 436: 155
[21] Li Y Q, Liu J Y. Interstitial Phase of Superalloy. Beijing: Metallurgical Industry Press, 1990: 276
(李玉清, 刘锦岩. 高温合金间隙相. 北京: 冶金工业出版社, 1990: 276)
[22] Richards N L, Chaturvedi M C. Int Mater Rev, 2000; 45: 109
[23] Hu R, Bai G H, Li J S, Zhang J Q, Zhang T B, Fu H Z. Mater Sci Eng, 2012; A548: 83
[24] Jena A K, Chaturvedi M C. J Mater Sci, 1984; 19: 3121
[25] Garosshen T J, Mccarthy G P. Metall Trans, 1985; 16A: 1213
[1] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[2] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[3] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[4] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[5] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[6] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[7] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[8] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[9] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[10] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[11] ZHANG Le,WANG Wei,M. Babar Shahzad,SHAN Yiyin,YANG Ke. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. 金属学报, 2020, 56(3): 351-360.
[12] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[13] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[14] YANG Ke,LIANG Ye,YAN Wei,SHAN Yiyin. Preferential Distribution of Boron and its Effect on Microstructure and Mechanical Properties of (9~12)%Cr Martensitic Heat Resistant Steels[J]. 金属学报, 2020, 56(1): 53-65.
[15] TAN Chaolin,ZHOU Kesong,MA Wenyou,ZENG Dechang. Research Progress of Laser Additive Manufacturing of Maraging Steels[J]. 金属学报, 2020, 56(1): 36-52.
No Suggested Reading articles found!