Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (5): 585-598    DOI: 10.11900/0412.1961.2021.00208
Current Issue | Archive | Adv Search |
Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys
WANG Changsheng1,2, FU Huadong1,2,3(), ZHANG Hongtao1,2, XIE Jianxin1,2,3()
1Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
2Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083, China
3Key Laboratory for Advanced Materials Processing (MOE), University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys. Acta Metall Sin, 2023, 59(5): 585-598.

Download:  HTML  PDF(4527KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The advancement of integrated circuit manufacturing process and chip packaging technology has improved the performance requirements for lead frame copper alloy. In the field of high-performance copper alloys, balancing and improving mechanical and electrical conductivity (EC) has been a challenge. This work investigates the effect of different cold-rolling deformations (0, 65%, 75%, 85%, and 95%) on the microstructure, properties, and precipitation behavior of Cu-3.0Ni-0.60Si-0.16Zn-0.15Cr-0.03P alloy to enhance its comprehensive performance through process control. The deformation-aging process parameters of high-performance Cu-Ni-Si alloys were determined by comparing the precipitation and recrystallization initial temperatures, microstructures, and properties of the samples after aging. The effect of cold-rolling deformation on precipitation kinetics and mechanism was studied. By optimizing the process parameters, the properties of the alloy are observed to be better than the existing Cu-Ni-Si alloys after 95% cold-rolling deformation and aging at 450oC for 60 min, with an ultimate tensile strength of (841 ± 10) MPa, and an EC of (52.2 ± 0.3)%IACS. This work's relevant research findings can provide theoretical reference and data support for realizing the comprehensive property enhancement of high-performance copper alloys.

Key words:  cold-rolling deformation      aging precipitation      microstructure      precipitation kinetics     
Received:  17 May 2021     
ZTFLH:  TG146.1  
Fund: National Key Research and Development Program of China(2020YFB0311101);National Natural Science Foundation of China(51974028);National Natural Science Foundation of China(92066205);Beijing Nova Programs(Z191100001119125);Fund for Xiaomi Young Scholars

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00208     OR     https://www.ams.org.cn/EN/Y2023/V59/I5/585

Fig.1  DSC test results of the Cu-3.28Ni-0.60Si-0.22Zn-0.11Cr-0.04P alloy by different cold-rolling deformations (ε)
(a) ε = 0% (b) ε = 65% (c) ε = 75% (d) ε = 85% (e) ε = 95%
(f) precipitation temperatures and recrystallization initial temperatures
Fig.2  OM images of microstructures of the alloy after different cold-rolling deformations (RD—rolling direction, ND—normal direction)
Fig.3  Effect of cold-rolling deformation reduction on electrical conductivity and hardness of the alloy before aging treatment
Fig.4  OM images of microstructures of alloys with different cold-rolling reductions after aging for 60 min at 400oC (a-d), 450oC (e-h), and 500oC (i-l)
Fig.5  Dislocation and early precipitates in 85% cold rolled alloy matrix
(a) TEM image of dislocation cell
(b) precipitates after aging for 20 min (indicated by arrows)
(c) HRTEM image of G.P. zone and early precipitates
(d) Fourier transform of speckles analysis of early precipitates
Fig.6  Distribution and morphologies of precipitates in the middle aging stage of 85% cold rolled wrought copper alloy
(a) 40 min aging (b) partial enlarged detail of Fig.6a and Fourier transform of precipitated phase
(c) 60 min aging (d) 90 min aging
Fig.7  Precipitated phase morphology, EDS, and SAED patterns of 85% cold-rolling deformed alloy after aging for 120 min
(a) bright-field TEM image of precipitated phase
(b) EDS of Cr3Si (c) Cr3Si SAED pattern (d) δ-Ni2Si SAED pattern
Fig.8  Electrical conductivities (a, c, e) and hardnesses (b, d, f) of the alloy after cold-rolling deformation and aging at different temperatures
(a, b) 400oC (c, d) 450oC (e, f) 500oC
Fig.9  Engineering stress-strain curves of the alloy after aging and alloys' properties distribution
(a) ε = 85%, 450oC (b) ε = 95%, 400oC
(c) ε = 95%, 450oC (d) properties distribution[7,10,11,13,15,16,28,34]
Fig.10  Relationships between aging time (t) and volume fraction (φ) of precipitated phase
Deformation / %400oC450oC500oC
nbnbnb
00.476970.1968160.531490.1439920.606330.093694
650.707260.0890450.501740.1849440.661540.075043
750.594240.1226170.574030.1002210.596980.116676
850.527620.1613060.538650.1037050.537060.170424
950.669980.0885100.544470.1184760.462260.283687
Table 1  Values of coefficients n and b in Avrami equation for alloys at different aging temperatures
Fig.11  Experimental and calculated values of electrical conductivity of alloys at different temperatures
Fig.12  Influence of cold-rolling deformation on S curve of precipitation kinetics at different temperatures
1 Jiang Y X, Lou H F, Xie H F, et al. Development status and prospects of advanced copper alloy[J]. Strateg. Study CAE, 2020, 22(5): 84
姜业欣, 娄花芬, 解浩峰 等. 先进铜合金材料发展现状与展望[J]. 中国工程科学, 2020, 22(5): 84
2 Lei Q, Xiao Z, Hu W P, et al. Phase transformation behaviors and properties of a high strength Cu-Ni-Si alloy[J]. Mater. Sci. Eng., 2017, A697: 37
3 Lee S, Matsunaga H, Sauvage X, et al. Strengthening of Cu-Ni-Si alloy using high-pressure torsion and aging[J]. Mater. Charact., 2014, 90: 62
doi: 10.1016/j.matchar.2014.01.006
4 Wang C S, Fu H D, Xie J X. Dynamic recrystallization behavior and microstructure evolution of high-performance Cu-3.28Ni-0.6Si-0.22Zn-0.11Cr-0.04P during hot compression[J]. Rare Met., 2021, 40: 156
doi: 10.1007/s12598-020-01578-z
5 Xu S, Fu H D, Wang Y T, et al. Effect of Ag addition on the microstructure and mechanical properties of Cu-Cr alloy[J]. Mater. Sci. Eng., 2018, A726: 208
6 Zhao Z Q, Xiao Z, Li Z, et al. Effect of magnesium on microstructure and properties of Cu-Cr alloy[J]. J. Alloys Compd., 2018, 752: 191
doi: 10.1016/j.jallcom.2018.04.159
7 Gholami M, Vesely J, Altenberger I, et al. Effects of microstructure on mechanical properties of CuNiSi alloys[J]. J. Alloys Compd., 2017, 696: 201
doi: 10.1016/j.jallcom.2016.11.233
8 Li D M, Jiang B B, Li X N, et al. Composition rule of high hardness and electrical conductivity Cu-Ni-Si alloys[J]. Acta Metall. Sin., 2019, 55: 1291
doi: 10.11900/0412.1961.2019.00080
李冬梅, 姜贝贝, 李晓娜 等. 高硬导电Cu-Ni-Si合金成分规律[J]. 金属学报, 2019, 55: 1291
doi: 10.11900/0412.1961.2019.00080
9 Monzen R, Watanabe C. Microstructure and mechanical properties of Cu-Ni-Si alloys[J]. Mater. Sci. Eng., 2008, A483-484: 117
10 Liu F, Li J, Peng L J, et al. Simultaneously enhanced hardness and electrical conductivity in a Cu-Ni-Si alloy by addition of Cobalt[J]. J. Alloys Compd., 2021, 862: 158667
doi: 10.1016/j.jallcom.2021.158667
11 Wang W, Kang H J, Chen Z N, et al. Effects of Cr and Zr additions on microstructure and properties of Cu-Ni-Si alloys[J]. Mater. Sci. Eng., 2016, A673: 378
12 Hou L L, Yin Z X, Gan C L, et al. Research progress of Cu-Ni-Si alloy for lead frame and its preparation and processing technology[J]. Mater. Res. Appl., 2020, 14: 59
侯绿林, 尹振兴, 甘春雷 等. 引线框架用Cu-Ni-Si合金及其制备加工工艺的研究进展[J]. 材料研究与应用, 2020, 14: 59
13 Li J, Huang G J, Mi X J, et al. Effect of Ni/Si mass ratio and thermomechanical treatment on the microstructure and properties of Cu-Ni-Si alloys[J]. Materials, 2019, 12: 2076
doi: 10.3390/ma12132076
14 Ghosh G, Miyake J, Fine M E. The systems-based design of high-strength, high-conductivity alloys[J]. JOM, 1997, 49(3): 56
15 Chen W, Li Z, Xie H, et al. Influence of Zinc on coarsening of δ-Ni2Si particles, aging behavior and hardness in a Cu-Ni-Si alloy[J]. J. Mater. Eng. Perform., 2017, 26: 2459
doi: 10.1007/s11665-017-2738-z
16 Zhang Y, Tian B H, Volinsky A A, et al. Microstructure and precipitate's characterization of the Cu-Ni-Si-P alloy[J]. J. Mater. Eng. Perform., 2016, 25: 1336
doi: 10.1007/s11665-016-1987-6
17 Wang W, Guo E Y, Chen Z N, et al. Correlation between microstructures and mechanical properties of cryorolled CuNiSi alloys with Cr and Zr alloying[J]. Mater. Charact., 2018, 144: 532
doi: 10.1016/j.matchar.2018.08.003
18 Peng L J, Ma J M, Liu X Y, et al. Influence of different treatment processes on microstructure and properties of Cu-Ni-Co-Si alloy[J]. Rare Met. Mater. Eng., 2019, 48: 1969
彭丽军, 马吉苗, 刘兴宇 等. 不同处理工艺对Cu-Ni-Co-Si合金组织与性能的影响[J]. 稀有金属材料与工程, 2019, 48: 1969
19 Xiao X P, Xu H, Chen J S, et al. Coarsening behavior of (Ni, Co)2Si particles in Cu-Ni-Co-Si alloy during aging treatment[J]. Rare Met., 2019, 38: 1062
doi: 10.1007/s12598-018-1169-9
20 Feng G B, Yu F X, Cheng J Y, et al. Re-aging behaviour and precipitated phase characteristics of high-performance Cu-Ni-Co-Si alloy[J]. Trans. Mater. Heat Treat., 2019, 40(8): 76
冯桄波, 余方新, 程建奕 等. 高性能Cu-Ni-Co-Si合金的二次时效行为及析出相特征[J]. 材料热处理学报, 2019, 40(8): 76
21 Wang C S, Fu H D, Jiang L, et al. A property-oriented design strategy for high performance copper alloys via machine learning[J]. npj Comput. Mater., 2019, 5: 87
doi: 10.1038/s41524-019-0227-7
22 Xiao X P, Xiong B Q, Wang Q S, et al. Microstructure and properties of Cu-Ni-Si-Zr alloy after thermomechanical treatments[J]. Rare Met., 2013, 32: 144
doi: 10.1007/s12598-013-0024-2
23 Kareva N T, Yakovleva I L, Samoilova O V. On the precipitation strengthening of Cu-2.6Ni-0.6Si-0.6Cr bronzes[J]. Phys. Met. Metallogr., 2017, 118: 795
doi: 10.1134/S0031918X17080075
24 Li H X, Hao X J, Zhao G, et al. Effect of plastic deformation on discontinuous coarsening of spinodally decomposed microstructure in Cu-Ni-Fe alloy[J]. Acta Metall. Sin., 1999, 35: 449
李洪晓, 郝新江, 赵 刚 等. 塑性变形对Cu-Ni-Fe合金失稳分解组织不连续粗化的影响[J]. 金属学报, 1999, 35: 449
25 Rdzawski Z, Stobrawa J. Thermomechanical processing of Cu-Ni-Si-Cr-Mg alloy[J]. Mater. Sci. Technol., 1993, 9: 142
doi: 10.1179/mst.1993.9.2.142
26 Suzuki S, Shibutani N, Mimura K, et al. Improvement in strength and electrical conductivity of Cu-Ni-Si alloys by aging and cold rolling[J]. J. Alloys Compd., 2006, 417: 116
doi: 10.1016/j.jallcom.2005.09.037
27 Watanabe H, Kunimine T, Watanabe C, et al. Tensile deformation characteristics of a Cu-Ni-Si alloy containing trace elements processed by high-pressure torsion with subsequent aging[J]. Mater. Sci. Eng., 2018, A730: 10
28 Liu F, Mi X J, Ma J M, et al. Microstructure and properties of low concentration of Cu-Ni-Si alloy[J]. Chin. J. Nonferrous Met., 2019, 29: 286
刘 峰, 米绪军, 马吉苗 等. 低浓度Cu-Ni-Si合金的组织与性能[J]. 中国有色金属学报, 2019, 29: 286
29 Wang Y H, Wang M P, Hong B, et al. Microstructure and properties of Cu-15Ni-8Sn-0.4Si alloy[J]. Trans. Nonferrous Met. Soc. China, 2003, 13: 1051
30 Sun X L, Jie J C, Wang T M, et al. Effect of two-step cryorolling and aging on mechanical and electrical properties of a Cu-Cr-Ni-Si alloy for lead frames applications[J]. Mater. Sci. Eng., 2021, A809: 140521
31 Lei Q, Li Z, Gao Y, et al. Microstructure and mechanical properties of a high strength Cu-Ni-Si alloy treated by combined aging processes[J]. J. Alloys Compd., 2017, 695: 2413
doi: 10.1016/j.jallcom.2016.11.137
32 Yang J Z, Bu K, Song K X, et al. Influence of low-temperature annealing temperature on the evolution of the microstructure and mechanical properties of Cu-Cr-Ti-Si alloy strips[J]. Mater. Sci. Eng., 2020, A798: 140120
33 Han S Z, Choi E A, Lim S H, et al. Alloy design strategies to increase strength and its trade-offs together[J]. Prog. Mater. Sci., 2021, 117: 100720
doi: 10.1016/j.pmatsci.2020.100720
34 Yang H Y, Ma Z C, Lei C H, et al. High strength and high conductivity Cu alloys: A review[J]. Sci. China Technol. Sci., 2020, 63: 2505
doi: 10.1007/s11431-020-1633-8
35 Geng Y F, Ban Y J, Wang B J, et al. A review of microstructure and texture evolution with nanoscale precipitates for copper alloys[J]. J. Mater. Res. Technol., 2020, 9: 11918
doi: 10.1016/j.jmrt.2020.08.055
36 Jiang L, Fu H D, Wang C S, et al. Enhanced mechanical and electrical properties of a Cu-Ni-Si alloy by thermo-mechanical processing[J]. Metall. Mater. Trans., 2020, 51A: 331
37 Huang G J, Xiao X P, Ma J M, et al. Effect of solid solution and aging process on microstructure and properties of Cu-1.4Ni-1.2Co-0.6Si alloy[J]. Trans. Mater. Heat Treat., 2014, 35(8): 58
黄国杰, 肖翔鹏, 马吉苗 等. 固溶时效对Cu-1.4Ni-1.2Co-0.6Si合金组织性能的影响[J]. 材料热处理学报, 2014, 35(8): 58
38 Yi J, Jia Y L, Zhao Y Y, et al. Precipitation behavior of Cu-3.0Ni-0.72Si alloy[J]. Acta Mater., 2019, 166: 261
doi: 10.1016/j.actamat.2018.12.047
39 Wu Y K, Li Y, Lu J Y, et al. Effects of pre-deformation on precipitation behaviors and properties in Cu-Ni-Si-Cr alloy[J]. Mater. Sci. Eng., 2019, A742: 501
40 Hu T, Chen J Z, Liu J Z, et al. The crystallographic and morphological evolution of the strengthening precipitates in Cu-Ni-Si alloys[J]. Acta Mater., 2013, 61: 1210
doi: 10.1016/j.actamat.2012.10.031
41 Cheng J Y, Tang B B, Yu F X, et al. Evaluation of nanoscaled precipitates in a Cu-Ni-Si-Cr alloy during aging[J]. J. Alloys Compd., 2014, 614: 189
doi: 10.1016/j.jallcom.2014.06.089
42 Liao Y H, Xie M W, Chen H M, et al. Thermodynamics and kinetics of discontinuous precipitation in Cu-9Ni-xSn alloy[J]. J. Alloys Compd., 2020, 827: 154314
doi: 10.1016/j.jallcom.2020.154314
43 Lei Q, Li Z, Pan Z Y, et al. Dynamics of phase transformation of Cu-Ni-Si alloy with super-high strength and high conductivity during aging[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1006
doi: 10.1016/S1003-6326(09)60249-1
44 Su J H, Liu P, Li H J, et al. Phase transformation in Cu-Cr-Zr-Mg alloy[J]. Mater. Lett., 2007, 61: 4963
doi: 10.1016/j.matlet.2007.03.085
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!