Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys
WANG Changsheng1,2, FU Huadong1,2,3(), ZHANG Hongtao1,2, XIE Jianxin1,2,3()
1Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China 2Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083, China 3Key Laboratory for Advanced Materials Processing (MOE), University of Science and Technology Beijing, Beijing 100083, China
Cite this article:
WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys. Acta Metall Sin, 2023, 59(5): 585-598.
The advancement of integrated circuit manufacturing process and chip packaging technology has improved the performance requirements for lead frame copper alloy. In the field of high-performance copper alloys, balancing and improving mechanical and electrical conductivity (EC) has been a challenge. This work investigates the effect of different cold-rolling deformations (0, 65%, 75%, 85%, and 95%) on the microstructure, properties, and precipitation behavior of Cu-3.0Ni-0.60Si-0.16Zn-0.15Cr-0.03P alloy to enhance its comprehensive performance through process control. The deformation-aging process parameters of high-performance Cu-Ni-Si alloys were determined by comparing the precipitation and recrystallization initial temperatures, microstructures, and properties of the samples after aging. The effect of cold-rolling deformation on precipitation kinetics and mechanism was studied. By optimizing the process parameters, the properties of the alloy are observed to be better than the existing Cu-Ni-Si alloys after 95% cold-rolling deformation and aging at 450oC for 60 min, with an ultimate tensile strength of (841 ± 10) MPa, and an EC of (52.2 ± 0.3)%IACS. This work's relevant research findings can provide theoretical reference and data support for realizing the comprehensive property enhancement of high-performance copper alloys.
Fund: National Key Research and Development Program of China(2020YFB0311101);National Natural Science Foundation of China(51974028);National Natural Science Foundation of China(92066205);Beijing Nova Programs(Z191100001119125);Fund for Xiaomi Young Scholars
Fig.1 DSC test results of the Cu-3.28Ni-0.60Si-0.22Zn-0.11Cr-0.04P alloy by different cold-rolling deformations (ε) (a) ε = 0% (b) ε = 65% (c) ε = 75% (d) ε = 85% (e) ε = 95% (f) precipitation temperatures and recrystallization initial temperatures
Fig.2 OM images of microstructures of the alloy after different cold-rolling deformations (RD—rolling direction, ND—normal direction)
Fig.3 Effect of cold-rolling deformation reduction on electrical conductivity and hardness of the alloy before aging treatment
Fig.4 OM images of microstructures of alloys with different cold-rolling reductions after aging for 60 min at 400oC (a-d), 450oC (e-h), and 500oC (i-l)
Fig.5 Dislocation and early precipitates in 85% cold rolled alloy matrix (a) TEM image of dislocation cell (b) precipitates after aging for 20 min (indicated by arrows) (c) HRTEM image of G.P. zone and early precipitates (d) Fourier transform of speckles analysis of early precipitates
Fig.6 Distribution and morphologies of precipitates in the middle aging stage of 85% cold rolled wrought copper alloy (a) 40 min aging (b) partial enlarged detail of Fig.6a and Fourier transform of precipitated phase (c) 60 min aging (d) 90 min aging
Fig.7 Precipitated phase morphology, EDS, and SAED patterns of 85% cold-rolling deformed alloy after aging for 120 min (a) bright-field TEM image of precipitated phase (b) EDS of Cr3Si (c) Cr3Si SAED pattern (d) δ-Ni2Si SAED pattern
Fig.8 Electrical conductivities (a, c, e) and hardnesses (b, d, f) of the alloy after cold-rolling deformation and aging at different temperatures (a, b) 400oC (c, d) 450oC (e, f) 500oC
Fig.9 Engineering stress-strain curves of the alloy after aging and alloys' properties distribution (a) ε = 85%, 450oC (b) ε = 95%, 400oC (c) ε = 95%, 450oC (d) properties distribution[7,10,11,13,15,16,28,34]
Fig.10 Relationships between aging time (t) and volume fraction (φ) of precipitated phase
Deformation / %
400oC
450oC
500oC
n
b
n
b
n
b
0
0.47697
0.196816
0.53149
0.143992
0.60633
0.093694
65
0.70726
0.089045
0.50174
0.184944
0.66154
0.075043
75
0.59424
0.122617
0.57403
0.100221
0.59698
0.116676
85
0.52762
0.161306
0.53865
0.103705
0.53706
0.170424
95
0.66998
0.088510
0.54447
0.118476
0.46226
0.283687
Table 1 Values of coefficients n and b in Avrami equation for alloys at different aging temperatures
Fig.11 Experimental and calculated values of electrical conductivity of alloys at different temperatures
Fig.12 Influence of cold-rolling deformation on S curve of precipitation kinetics at different temperatures
1
Jiang Y X, Lou H F, Xie H F, et al. Development status and prospects of advanced copper alloy[J]. Strateg. Study CAE, 2020, 22(5): 84
Lei Q, Xiao Z, Hu W P, et al. Phase transformation behaviors and properties of a high strength Cu-Ni-Si alloy[J]. Mater. Sci. Eng., 2017, A697: 37
3
Lee S, Matsunaga H, Sauvage X, et al. Strengthening of Cu-Ni-Si alloy using high-pressure torsion and aging[J]. Mater. Charact., 2014, 90: 62
doi: 10.1016/j.matchar.2014.01.006
4
Wang C S, Fu H D, Xie J X. Dynamic recrystallization behavior and microstructure evolution of high-performance Cu-3.28Ni-0.6Si-0.22Zn-0.11Cr-0.04P during hot compression[J]. Rare Met., 2021, 40: 156
doi: 10.1007/s12598-020-01578-z
5
Xu S, Fu H D, Wang Y T, et al. Effect of Ag addition on the microstructure and mechanical properties of Cu-Cr alloy[J]. Mater. Sci. Eng., 2018, A726: 208
6
Zhao Z Q, Xiao Z, Li Z, et al. Effect of magnesium on microstructure and properties of Cu-Cr alloy[J]. J. Alloys Compd., 2018, 752: 191
doi: 10.1016/j.jallcom.2018.04.159
7
Gholami M, Vesely J, Altenberger I, et al. Effects of microstructure on mechanical properties of CuNiSi alloys[J]. J. Alloys Compd., 2017, 696: 201
doi: 10.1016/j.jallcom.2016.11.233
8
Li D M, Jiang B B, Li X N, et al. Composition rule of high hardness and electrical conductivity Cu-Ni-Si alloys[J]. Acta Metall. Sin., 2019, 55: 1291
doi: 10.11900/0412.1961.2019.00080
Monzen R, Watanabe C. Microstructure and mechanical properties of Cu-Ni-Si alloys[J]. Mater. Sci. Eng., 2008, A483-484: 117
10
Liu F, Li J, Peng L J, et al. Simultaneously enhanced hardness and electrical conductivity in a Cu-Ni-Si alloy by addition of Cobalt[J]. J. Alloys Compd., 2021, 862: 158667
doi: 10.1016/j.jallcom.2021.158667
11
Wang W, Kang H J, Chen Z N, et al. Effects of Cr and Zr additions on microstructure and properties of Cu-Ni-Si alloys[J]. Mater. Sci. Eng., 2016, A673: 378
12
Hou L L, Yin Z X, Gan C L, et al. Research progress of Cu-Ni-Si alloy for lead frame and its preparation and processing technology[J]. Mater. Res. Appl., 2020, 14: 59
Li J, Huang G J, Mi X J, et al. Effect of Ni/Si mass ratio and thermomechanical treatment on the microstructure and properties of Cu-Ni-Si alloys[J]. Materials, 2019, 12: 2076
doi: 10.3390/ma12132076
14
Ghosh G, Miyake J, Fine M E. The systems-based design of high-strength, high-conductivity alloys[J]. JOM, 1997, 49(3): 56
15
Chen W, Li Z, Xie H, et al. Influence of Zinc on coarsening of δ-Ni2Si particles, aging behavior and hardness in a Cu-Ni-Si alloy[J]. J. Mater. Eng. Perform., 2017, 26: 2459
doi: 10.1007/s11665-017-2738-z
16
Zhang Y, Tian B H, Volinsky A A, et al. Microstructure and precipitate's characterization of the Cu-Ni-Si-P alloy[J]. J. Mater. Eng. Perform., 2016, 25: 1336
doi: 10.1007/s11665-016-1987-6
17
Wang W, Guo E Y, Chen Z N, et al. Correlation between microstructures and mechanical properties of cryorolled CuNiSi alloys with Cr and Zr alloying[J]. Mater. Charact., 2018, 144: 532
doi: 10.1016/j.matchar.2018.08.003
18
Peng L J, Ma J M, Liu X Y, et al. Influence of different treatment processes on microstructure and properties of Cu-Ni-Co-Si alloy[J]. Rare Met. Mater. Eng., 2019, 48: 1969
Xiao X P, Xu H, Chen J S, et al. Coarsening behavior of (Ni, Co)2Si particles in Cu-Ni-Co-Si alloy during aging treatment[J]. Rare Met., 2019, 38: 1062
doi: 10.1007/s12598-018-1169-9
20
Feng G B, Yu F X, Cheng J Y, et al. Re-aging behaviour and precipitated phase characteristics of high-performance Cu-Ni-Co-Si alloy[J]. Trans. Mater. Heat Treat., 2019, 40(8): 76
Wang C S, Fu H D, Jiang L, et al. A property-oriented design strategy for high performance copper alloys via machine learning[J]. npj Comput. Mater., 2019, 5: 87
doi: 10.1038/s41524-019-0227-7
22
Xiao X P, Xiong B Q, Wang Q S, et al. Microstructure and properties of Cu-Ni-Si-Zr alloy after thermomechanical treatments[J]. Rare Met., 2013, 32: 144
doi: 10.1007/s12598-013-0024-2
23
Kareva N T, Yakovleva I L, Samoilova O V. On the precipitation strengthening of Cu-2.6Ni-0.6Si-0.6Cr bronzes[J]. Phys. Met. Metallogr., 2017, 118: 795
doi: 10.1134/S0031918X17080075
24
Li H X, Hao X J, Zhao G, et al. Effect of plastic deformation on discontinuous coarsening of spinodally decomposed microstructure in Cu-Ni-Fe alloy[J]. Acta Metall. Sin., 1999, 35: 449
Rdzawski Z, Stobrawa J. Thermomechanical processing of Cu-Ni-Si-Cr-Mg alloy[J]. Mater. Sci. Technol., 1993, 9: 142
doi: 10.1179/mst.1993.9.2.142
26
Suzuki S, Shibutani N, Mimura K, et al. Improvement in strength and electrical conductivity of Cu-Ni-Si alloys by aging and cold rolling[J]. J. Alloys Compd., 2006, 417: 116
doi: 10.1016/j.jallcom.2005.09.037
27
Watanabe H, Kunimine T, Watanabe C, et al. Tensile deformation characteristics of a Cu-Ni-Si alloy containing trace elements processed by high-pressure torsion with subsequent aging[J]. Mater. Sci. Eng., 2018, A730: 10
28
Liu F, Mi X J, Ma J M, et al. Microstructure and properties of low concentration of Cu-Ni-Si alloy[J]. Chin. J. Nonferrous Met., 2019, 29: 286
Wang Y H, Wang M P, Hong B, et al. Microstructure and properties of Cu-15Ni-8Sn-0.4Si alloy[J]. Trans. Nonferrous Met. Soc. China, 2003, 13: 1051
30
Sun X L, Jie J C, Wang T M, et al. Effect of two-step cryorolling and aging on mechanical and electrical properties of a Cu-Cr-Ni-Si alloy for lead frames applications[J]. Mater. Sci. Eng., 2021, A809: 140521
31
Lei Q, Li Z, Gao Y, et al. Microstructure and mechanical properties of a high strength Cu-Ni-Si alloy treated by combined aging processes[J]. J. Alloys Compd., 2017, 695: 2413
doi: 10.1016/j.jallcom.2016.11.137
32
Yang J Z, Bu K, Song K X, et al. Influence of low-temperature annealing temperature on the evolution of the microstructure and mechanical properties of Cu-Cr-Ti-Si alloy strips[J]. Mater. Sci. Eng., 2020, A798: 140120
33
Han S Z, Choi E A, Lim S H, et al. Alloy design strategies to increase strength and its trade-offs together[J]. Prog. Mater. Sci., 2021, 117: 100720
doi: 10.1016/j.pmatsci.2020.100720
34
Yang H Y, Ma Z C, Lei C H, et al. High strength and high conductivity Cu alloys: A review[J]. Sci. China Technol. Sci., 2020, 63: 2505
doi: 10.1007/s11431-020-1633-8
35
Geng Y F, Ban Y J, Wang B J, et al. A review of microstructure and texture evolution with nanoscale precipitates for copper alloys[J]. J. Mater. Res. Technol., 2020, 9: 11918
doi: 10.1016/j.jmrt.2020.08.055
36
Jiang L, Fu H D, Wang C S, et al. Enhanced mechanical and electrical properties of a Cu-Ni-Si alloy by thermo-mechanical processing[J]. Metall. Mater. Trans., 2020, 51A: 331
37
Huang G J, Xiao X P, Ma J M, et al. Effect of solid solution and aging process on microstructure and properties of Cu-1.4Ni-1.2Co-0.6Si alloy[J]. Trans. Mater. Heat Treat., 2014, 35(8): 58
Yi J, Jia Y L, Zhao Y Y, et al. Precipitation behavior of Cu-3.0Ni-0.72Si alloy[J]. Acta Mater., 2019, 166: 261
doi: 10.1016/j.actamat.2018.12.047
39
Wu Y K, Li Y, Lu J Y, et al. Effects of pre-deformation on precipitation behaviors and properties in Cu-Ni-Si-Cr alloy[J]. Mater. Sci. Eng., 2019, A742: 501
40
Hu T, Chen J Z, Liu J Z, et al. The crystallographic and morphological evolution of the strengthening precipitates in Cu-Ni-Si alloys[J]. Acta Mater., 2013, 61: 1210
doi: 10.1016/j.actamat.2012.10.031
41
Cheng J Y, Tang B B, Yu F X, et al. Evaluation of nanoscaled precipitates in a Cu-Ni-Si-Cr alloy during aging[J]. J. Alloys Compd., 2014, 614: 189
doi: 10.1016/j.jallcom.2014.06.089
42
Liao Y H, Xie M W, Chen H M, et al. Thermodynamics and kinetics of discontinuous precipitation in Cu-9Ni-xSn alloy[J]. J. Alloys Compd., 2020, 827: 154314
doi: 10.1016/j.jallcom.2020.154314
43
Lei Q, Li Z, Pan Z Y, et al. Dynamics of phase transformation of Cu-Ni-Si alloy with super-high strength and high conductivity during aging[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1006
doi: 10.1016/S1003-6326(09)60249-1
44
Su J H, Liu P, Li H J, et al. Phase transformation in Cu-Cr-Zr-Mg alloy[J]. Mater. Lett., 2007, 61: 4963
doi: 10.1016/j.matlet.2007.03.085