Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (3): 323-328    DOI: 10.3724/SP.J.1037.2013.00383
Current Issue | Archive | Adv Search |
NUCLEATION AND COARSENING MECHANISM OF δ PHASE IN INCONEL 625 DEPOSITED METAL
DI Xinjie1,2(), XING Xixue1,2, WANG Baosen3
1 Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin 300072
2 School of Materials Science and Engineering, Tianjin University, Tianjin 300072
3 Baosteel Research Institute, Baoshan Iron & Steel Co., Ltd., Shanghai 201900
Cite this article: 

DI Xinjie, XING Xixue, WANG Baosen. NUCLEATION AND COARSENING MECHANISM OF δ PHASE IN INCONEL 625 DEPOSITED METAL. Acta Metall Sin, 2014, 50(3): 323-328.

Download:  HTML  PDF(8745KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Using Inconel 625 wire to weld high yield strength steels or stainless steels that commonly used in nuclear power plant components and gas turbines can significantly improve high temperature mechanical properties and corrosion resistance of weld structure. However, toughness, fatigue strength and creep rupture strength of weld would decline obviously because of the precipitation of δ phase during service at elevated temperatures for a long time. This work aims to investigate nucleation mechanism of δ phase in Inconel 625 deposited metal by means of SEM and TEM. Meanwhile, coarsening inherent law of δ phase during post-weld heat treatment (PWHT) at 850 ℃ for 2, 4 and 8 h respectively was revealed. The results indicate that a large number of needle-like δ phase precipitates in Inconel 625 deposited metal after PWHT at 850 ℃. These δ phases appear a grid-like distribution in γ-matrix, and there are some poor γ" phase regions appearing near δ phase. Formation process of δ phase is a solid phase transformation process which is like bainite transformation in steels. Crystal nucleus of δ phase form in the close-packed plane of γ" phase by shear mode, and coarsening behavior of δ phase is a diffusion-controlled growth process. When PWHT holding time is shorter, actual average size of δ phase is in line with LSW theory. With PWHT holding time extending, its actual average size deviates from the predicted value of classical LSW theory, because of the high-density and non-directional precipitation characteristics of δ phase.

Key words:  Inconel 625 deposited metal      post-weld heat treatment      δ phase      nucleation      coarsening     
Received:  08 July 2013     
ZTFLH:  TG401  
Fund: Supported by Tianjin Natural Science Foundation (No.11JCYBJC06000) and Key Project of Tianjin Municipal Science and Technology Support Program (No.11ZCGYSF00100)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00383     OR     https://www.ams.org.cn/EN/Y2014/V50/I3/323

Fig.1  

堆焊试件示意图

Fig.2  

Inconel 625熔敷金属组织的SEM像

Fig.3  

Inconel 625熔敷金属中δ相的TEM像、 SAED谱及EDS

Fig.4  

Inconel 625熔敷金属中δ相的形成过程及其SAED谱

Fig.5  

Inconel 625熔敷金属在850 ℃保温不同时间后δ相的TEM像

Holding time / h l - / nm w - / nm
2 913 57
4 1423 84
8 1894 136
Table 1  The average sizes of δ phase at different holding times
Fig.6  

在850 ℃下δ相的平均尺寸与热处理保温时间的关系

Fig.7  

在850 ℃下焊后热处理保温时间对δK值的影响

[1] Special Metals Corporation Products. INCONEL® alloy 625, www.specialmetals.com/products
[2] Murr L E, Martinez E, Gaytan S M.Metall Mater Trans, 2011; 42A: 3491
[3] Xu Y L, Ran Q X, Li J, Peng J C, Xiao X S, Cao X L, Jia G Q.Mater Sci Eng, 2013; A569: 27
[4] Paul C P, Ganesh P, Mishra S K, Bhargava P, Negi J, Nath A K.Opt Laser Technol, 2007; 39: 800
[5] Evans N D, Maziase P J, Shingledecker J P, Yamamoto Y.Mater Sci Eng, 2008; A498: 412
[6] Dupont J N, Lippold J C, Kiser S D. Welding Metallurgy and Weldability of Nickel-base Alloys. New Jersey: John Wiley & Sons, 2009: 47
[7] Shankar V, Bhanu Sankara Rao K, Mannan S L.J Nucl Mater, 2001; 288: 222
[8] Smith G D, Tillack D J, Patel S J. In: Loria E A ed., Superalloys 718, 625, 706 and Various Derivatives, Warrendale PA: The Minerals Metals & Materials Society, 2001: 35
[9] Janaki Ram D J, Venugopal Reddy A, Prasad Rao K, Madhusudhan Reddy G.J Mater Proc Technol, 2005; 167: 73
[10] Shoemaker L E. In: Loria E A ed., Superalloys 718, 625, 706 and Various Derivatives, Warrendale PA: The Minerals Metals & Materials Society, 2005: 409
[11] Cortial F, Corrieu J M, Vernot-Loier C.Metall Mater Trans, 1995; 26A: 1273
[12] Mathew M D, Bhanu Sankara Rao K, Mannan S L.Mater Sci Eng, 2004; A372: 327
[13] Mathew M D, Parameswaran P, Bhanu Sankara Rao K.Mater Charact, 2008; 59: 508
[14] Sundararaman M, Mukhopadhyay P, Banerjee S.Metall Trans, 1988; A19: 453
[15] Huang Y, Langdon T G. J Mater Sci, 2007; 42: 421
[16] Zhang H Y, Zhang S H, Cheng M, Li Z X.Mater Charact, 2010; 61: 49
[17] Yeh A C, Lu K W, Kuo C M, Bor H Y, Wei C N.Mater Sci Eng, 2011; A530: 525
[18] Kuo C M, Yang Y T, Bor H Y, Wei C N, Tai C C. Mater Sci Eng, 2009; A510-511: 289
[19] Dong J X, Xie X S, Wang M.Ordnance Mater Sci Eng, 1993; 16: 51
[20] Xie X S, Dong J X, Fu S H, Zhang M C.Acta Metall Sin, 2010; 46: 1289
(谢锡善, 董建新, 付书红, 张麦仓. 金属学报, 2010; 46: 1289)
[21] Footner P K, Richards B P.J Mater Sci, 1982; 17: 2141
[22] Smokingermain R E,translated by Zhang R J. Modern Physical Metallurgy. Beijing: Metallurgical Industry Press, 1980: 176
(Smokingermain R E著,张人洁译. 现代物理冶金学. 北京: 冶金工业出版社, 1980: 176)
[23] Cahn J W.Acta Metall, 1966; 14: 83
[24] Orian R A.Acta Metall, 1964; 12: 1399
[25] Burke M G, Miller M K.Precipitationin Alloy 718. Pennsylvania: TMS, 1991: 3377
[1] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[2] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[3] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[4] Juan DU, Xiaoxing CHENG, Tiannan YANG, Longqing CHEN, Frédéric Mompiou, Wenzheng ZHANG. In Situ TEM Study on the Sympathetic Nucleation of Austenite Precipitates[J]. 金属学报, 2019, 55(4): 511-520.
[5] Dandan FAN, Junfeng XU, Yanan ZHONG, Zengyun JIAN. Effect of Superheated Temperature and Cooling Rate on the Solidification of Undercooled Ti Melt[J]. 金属学报, 2018, 54(6): 844-850.
[6] Shubo LI, Wenbo DU, Xudong WANG, Ke LIU, Zhaohui WANG. Effect of Zr Addition on the Grain Refinement Mechanism of Mg-Gd-Er Alloys[J]. 金属学报, 2018, 54(6): 911-917.
[7] Mingfang ZHU, Like XING, Hui FANG, Qingyu ZHANG, Qianyu TANG, Shiyan PAN. Progresses in Dendrite Coarsening During Solidification of Alloys[J]. 金属学报, 2018, 54(5): 789-800.
[8] Yu ZHANG, Qing WANG, Honggang DONG, Chuang DONG, Hongyu ZHANG, Xiaofeng SUN. Nickel-Based Single-Crystal Superalloys (Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W) Designed by Cluster-Plus-Glue-Atom Model and Their 1000 h Long-Term Ageing Behavior at 900 ℃[J]. 金属学报, 2018, 54(4): 591-602.
[9] Jincheng WANG, Can GUO, Qi ZHANG, Sai TANG, Junjie LI, Zhijun WANG. Recent Progresses in Modeling of Nucleation During Solidification on the Atomic Scale[J]. 金属学报, 2018, 54(2): 204-216.
[10] Tongmin WANG, Jingjing WEI, Xudong WANG, Man YAO. Progress and Application of Microstructure Simulation of Alloy Solidification[J]. 金属学报, 2018, 54(2): 193-203.
[11] Zongyuan ZOU, Xiaokui XU, Yinxiao LI, Chao WANG. Study on the Method of Improving the Toughness of CGHAZ for High Heat Input Welding Steels[J]. 金属学报, 2017, 53(8): 957-967.
[12] Jin WANG, Yuefei ZHANG, Jinyao MA, Jixue LI, Ze ZHANG. Microcrack Nucleation and Propagation Investigation ofInconel 740H Alloy Under In SituHigh Temperature Tensile Test[J]. 金属学报, 2017, 53(12): 1627-1635.
[13] Yong YANG,Zhaodong WANG,Tianrui LI,Tao JIA,Xiaolin LI,Guodong WANG. A Model for Precipitation-Temperature-Time Curve Calculation[J]. 金属学报, 2017, 53(1): 123-128.
[14] Rui CHEN, Qingyan XU, Qinfang WU, Huiting GUO, Baicheng LIU. NUCLEATION MODEL AND DENDRITE GROWTH SIMULATION IN SOLIDIFICATON PROCESS OF Al-7Si-Mg ALLOY[J]. 金属学报, 2015, 51(6): 733-744.
[15] Ke ZHANG, Xinjun SUN, Qilong YONG, Zhaodong LI, Gengwei YANG, Yuanmei LI. EFFECT OF TEMPERING TIME ON MICROSTRUC- TURE AND MECHANICAL PROPERTIES OF HIGH Ti MICROALLOYED QUENCHED MARTENSITIC STEEL[J]. 金属学报, 2015, 51(5): 553-560.
No Suggested Reading articles found!