|
|
PLASTIC DEFORMATION MECHANISMS IN NANOTWINNED METALS |
LU Lei( ), YOU Zesheng |
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 |
|
Cite this article:
LU Lei, YOU Zesheng. PLASTIC DEFORMATION MECHANISMS IN NANOTWINNED METALS. Acta Metall Sin, 2014, 50(2): 129-136.
|
Abstract A brief overview is provided about the plastic deformation mechanisms in nanotwinned metals. The unique two-dementional nanoscale twin lamellae lead to different dislocation slip systems activated during plastic deformation. It has been revealed that there are three distinctly different dislocation-mediated deformation mechanisms in nanotwinned metals, namely dislocation pile-up against and slip transfer across twin boundaries, Shockley partials gliding on twin boundaries leading to twin boundary migration, and threading dislocations slip confined by neighboring twin boundaries. It is further demonstrated that these three dislocation-mediated mechanisms are switchable upon changing in the loading direction with respect to twin boundaries.
|
Received: 05 November 2013
|
|
Fund: Supported by National Basic Research Program of China (No.2012CB932202) and National Natural Science Foundation of China (Nos.51071153 and 51371171) |
[1] |
Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Science, 2004; 304: 422
|
[2] |
Lu K, Lu L, Suresh S. Science, 2009; 324: 349
|
[3] |
Zhu T, Li J. Prog Mater Sci, 2010; 55: 710
|
[4] |
Shen Y F, Lu L, Lu Q H, Jin Z H, Lu K.Scr Mater, 2005; 52: 989
|
[5] |
Zhang X, Misra A, Wang H, Nastasi M, Embury J D, Mitchell T E, Hoagland R G, Hirth J P. Appl Phys Lett, 2004; 84: 1096
|
[6] |
Zhang X, Misra A, Wang H, Shen T D, Nastasi M, Mitchell T E, Hirth J P, Hoagland R G, Embury J D. Acta Mater, 2004; 52: 995
|
[7] |
Lu L, Schwaiger R, Shan Z W, Dao M, Lu K, Suresh S. Acta Mater, 2005; 53: 2169
|
[8] |
Chen X H, Lu L. Scr Mater, 2007; 57: 133
|
[9] |
Chen X H, Lu L, Lu K. Scr Mater, 2011; 64: 311
|
[10] |
Lu L, You Z S, Lu K. Scr Mater, 2012; 66: 837
|
[11] |
Shute C J, Myers B D, Xie S, Barbee Jr T W, Hodge A M, Weertman J R. Scr Mater, 2009; 60: 1073
|
[12] |
Shute C J, Myers B D, Xie S, Li S Y, Barbee Jr T W, Hodge A M, Weertman J R. Acta Mater, 2011; 59: 4569
|
[13] |
Hodge A M, Furnish T A, Shute C J, Liao Y, Huang X, Hong C S, Zhu Y T, Barbee Jr T W, Weertman J R.Scr Mater, 2012; 66: 872
|
[14] |
Pan Q S, Lu Q H, Lu L. Acta Mater, 2013; 61: 1383
|
[15] |
Singh A, Tang L, Dao M, Lu L, Suresh S. Acta Mater, 2011; 59: 2437
|
[16] |
Shen Y F, Lu L, Dao M, Suresh S. Scr Mater, 2006; 55: 319
|
[17] |
Lu L, Dao M, Zhu T, Li J. Scr Mater, 2009; 60: 1062
|
[18] |
Lu L, Zhu T, Shen Y, Dao M, Lu K, Suresh S. Acta Mater, 2009; 57: 5165
|
[19] |
Wu Z X, Zhang Y W, Srolovitz D J.Acta Mater, 2009; 57: 4508
|
[20] |
Wu Z X, Zhang Y W, Srolovitz D J. Acta Mater, 2011; 59: 6890
|
[21] |
Asaro R J, Kulkarni Y. Scr Mater, 2008; 58: 389
|
[22] |
Kulkarni Y, Asaro R J. Acta Mater, 2009; 57: 4835
|
[23] |
Dao M, Lu L, Shen Y F, Suresh S.Acta Mater, 2006; 54: 5421
|
[24] |
Jerusalem A, Dao M, Suresh S, Radovitzky R. Acta Mater, 2008; 56: 4647
|
[25] |
Asaro R J, Suresh S. Acta Mater, 2005; 53: 3369
|
[26] |
Zhang X, Wang H, Chen X H, Lu L, Lu K, Hoagland R G, Misra A. Appl Phys Lett, 2006; 88: 173116
|
[27] |
Hartley C S, Blachon D L A.J Appl Phys, 1978; 49: 4788
|
[28] |
Zhu T, Gao H. Scr Mater, 2012; 66: 843
|
[29] |
Hall E O. Proc Phys Soc London, 1951; 64B: 747
|
[30] |
Petch N J.J Iron Steel Int, 1953; 174: 25
|
[31] |
Jin Z H, Gumbsch P, Ma E, Albe K, Lu K, Hahn H, Gleiter H. Scr Mater, 2006; 54: 1163
|
[32] |
Jin Z H, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H, Hahn H. Acta Mater, 2008; 56: 1126
|
[33] |
Shabib I, Miller R E. Modell Simul Mater Sci Eng, 2009; 17: 055009
|
[34] |
Shabib I, Miller R E. Acta Mater, 2009; 57: 4364
|
[35] |
Lu L, Chen X, Huang X, Lu K. Science, 2009; 323: 607
|
[36] |
Li X, Wei Y, Lu L, Lu K, Gao H. Nature, 2010; 464: 877
|
[37] |
Merz M D, Dahlgren S D. J Appl Phys, 1975; 46: 3235
|
[38] |
Hodge A M, Wang Y M, Barbee Jr T W, Scr Mater, 2008; 59: 163
|
[39] |
Anderoglu O, Misra A, Wang J, Hoagland R G, Hirth J P, Zhang X. Int J Plast, 2010; 26: 875
|
[40] |
You Z S, Lu L, Lu K. Acta Mater, 2011; 59: 6927
|
[41] |
Misra A, Hirth J P, Hoagland R G. Acta Mater, 2005; 53: 4817
|
[42] |
Nix W. Metall Mater Trans, 1989; 20A: 2217
|
[43] |
Freund L B. J Appl Mech, 1987; 54: 553
|
[44] |
Matthews J W, Blakeslee A E. J Cryst Growth, 1975; 29: 273
|
[45] |
You Z, Li X, Gui L, Lu Q, Zhu T, Gao H, Lu L.Acta Mater, 2013; 61: 217
|
[46] |
Deng C, Sansoz F. Acta Mater, 2009; 57: 6090
|
[47] |
Deng C, Sansoz F. Nano Lett, 2009; 9: 1517
|
[48] |
Cao A J, Wei Y G, Mao S X. Appl Phys Lett, 2007; 90: 151909
|
[49] |
Hu Q, Li L, Ghoniem N M. Acta Mater, 2009; 57: 4866
|
[50] |
Li L, Ghoniem N M. Phys Rev, 2009; 79B: 075444
|
[51] |
Jang D, Li X, Gao H, Greer J R. Nat Nanotechnol, 2012; 7: 594
|
[52] |
Idrissi H, Wang B, Colla M S, Raskin J P, Schryvers D, Pardoen T. Adv Mater, 2011; 23: 2119
|
[53] |
Bufford D, Wang H, Zhang X.Acta Mater, 2011; 59: 93
|
[54] |
Lu K, Yan F K, Wang H T, Tao N R. Scr Mater, 2012; 66: 878
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|