Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys
LIU Junpeng1(), CHEN Hao1, ZHANG Chi1, YANG Zhigang1, ZHANG Yong2,3, DAI Lanhong4
1Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China 2State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China 3Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing 100083, China 4State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
Cite this article:
LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys. Acta Metall Sin, 2023, 59(6): 727-743.
Owing to the multi-principal element and higher intrinsic configurational entropy, high-entropy alloys exhibit excellent mechanical and physicochemical performance, which has garnered extensive attention from researchers. By virtue of the excellent performances in terms of superior strength, ductility, toughness, impact resistance property, and adjustable phase stability, especially in cryogenic environments, high-entropy alloys have broad application prospects in fields such as deep-space exploration, low temperature superconducting, and the gas industry. In this paper, the deformation and strengthening-toughening mechanisms of high-entropy alloys are summarized by reviewing the cryogenic progress. Furthermore, the promising research directions of high-entropy alloys in cryogenic engineering application combined with the performance of traditional cryogenic materials are also presented.
Fund: National Key Research and Development Program of China(2022YFE0110800);National Key Research and Development Program of China(2021YFB3702300);National Natural Science Foundation of China(52101169);National Natural Science Foundation of China(52273280)
Fig.1 Schematic of crystal structure in high-entropy alloy (HEA) with severe distortion[3]
Fig.2 Tensile properties of CoCrFeNiMn HEA at room temperature and cryogenic condition after cryogenic rolling process[9] (σb—ultimate tensile strength)
Fig.3 Dislocation configurations of Ni30Co30Fe13Cr15Al6Ti6 HEA after cryogenic deformation[11]
Fig.4 Typical Lomer-Cottrell (L-C) lock in HEA during dislocation motion[66]
Fig.5 Nano-twins in L12 precipitate in Al3.6Co27.3Cr18.2Fe18.2Ni27.3Ti5.4 HEA after deformation at 77 K[68]
Fig.6 Structure of short-range-order (SRO) in B-doped Fe40Mn40Co10Cr10 HEA after cryogenic deformation[93]
Fig.7 Feature of twins and phase transition in CoCrFeNi HEA after deformation at 4.2 K[10]
Fig.8 Ashby map of tensile properties at 4.2 K among HEA with other cryogenic metallic materials[10]
Fig.9 Schematic diagram of cryogenic work-hardening mechanisms in Fe-based medium-entropy alloy (GB—grain boundary, SB—shear band)[95]
Fig.10 Morphology, mechanical properties, and microstructure evolutions of Fe55Co17.5Cr12.5Ni10Mo3C2 HEA[91]
Fig.11 Eutectic structure of AlCoCrFeNi2.1 HEA[98]
Fig.12 Deformation feature of dual-phases in Al19Co20-Fe20Ni41 eutectic high-entropy alloy (EHEA) at cryogenic environment[100] (a, b) structure features of L12 and B2 phase after tensile test (strain ε ≈ 12%) at 77 K, which forest-dislocation hardening occurs in the L12 phase (c) structure feature of L12 and B2 phase after tensile test (ε ≈ 16%) at 293 K (Inset shows cooperative deformation of the adjacent B2 phase)
Fig.13 Tensile properties of hot-drawing CoCrNi wire at room and cryogenic temperatures[49] (σy—yield strength, εu—uniform elongation, εf—fracture strain)
Fig.14 Microstructures of AlCoCrFeNi2.1 EHEA wire during tensile test at 77 K[102]
Fig.15 Ashby maps showing the yield strength (a) and ultimate tensile strength (b) vs elongation to failure for different HEAs at 77 K (CoCr-FeNiMn alloy[4,9,16,50,51,77,81,82]; PS—precipitate-strengthening[11,48,67,68,80,91,97]; TRIP—phase transformation induced plasticity[42,63,69,70,86,88-90,92-95]; eutectic HEA[99,100]; TiZrHfNbTa HEA[41]; HEA-wire[8,49,102]; CoCrNi medium-entropy alloy (MEA)[7,10,40,45,53,59]; SP— single-phase[61,71,72,75,79]; DP—dual-phase[73,84,96])
1
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
2
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/(ISSN)1527-2648
3
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
doi: 10.1016/j.pmatsci.2013.10.001
4
Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
doi: 10.1016/j.actamat.2013.06.018
5
Zaddach A J, Niu C, Koch C C, et al. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy [J]. JOM, 2013, 65: 1780
doi: 10.1007/s11837-013-0771-4
6
Huang S, Li W, Lu S, et al. Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy [J]. Scr. Mater., 2015, 108: 44
doi: 10.1016/j.scriptamat.2015.05.041
7
Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602
pmid: 26830651
8
Li D Y, Li C X, Feng T, et al. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures [J]. Acta Mater., 2017, 123: 285
doi: 10.1016/j.actamat.2016.10.038
9
Liu J P. Cryogenic deformation mechanisms and serration behavior of CoCrFeNi FCC high-entropy alloys [D]. Beijing: University of Science and Technology Beijing, 2018
Liu J P, Guo X X, Lin Q Y, et al. Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures [J]. Sci. China Mater., 2019, 62: 853
doi: 10.1007/s40843-018-9373-y
11
Yang T, Zhao Y L, Luan J H, et al. Nanoparticles-strengthened high-entropy alloys for cryogenic applications showing an exceptional strength-ductility synergy [J]. Scr. Mater., 2019, 164: 30
doi: 10.1016/j.scriptamat.2019.01.034
12
Naeem M, He H Y, Harjo S, et al. Temperature-dependent hardening contributions in CrFeCoNi high-entropy alloy [J]. Acta Mater., 2021, 221: 117371
doi: 10.1016/j.actamat.2021.117371
13
Liu D, Yu Q, Kabra S, et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin [J]. Science, 2022, 378: 978
doi: 10.1126/science.abp8070
pmid: 36454850
14
Zhou Y J, Zhang Y, Wang Y L, et al. Solid solution alloys of AlCoCrFeNiTi x with excellent room-temperature mechanical properties [J]. Appl. Phys. Lett., 2007, 90: 181904
doi: 10.1063/1.2734517
15
Qiao J W, Ma S G, Huang E W, et al. Microstructural characteristics and mechanical behaviors of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperatures [J]. Mater. Sci. Forum., 2011, 688: 419
doi: 10.4028/www.scientific.net/MSF.688
16
Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581
pmid: 25190791
17
Hemphill M A, Yuan T, Wang G Y, et al. Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys [J]. Acta Mater., 2012, 60: 5723
doi: 10.1016/j.actamat.2012.06.046
18
Li J M, Yang X, Zhu R L, et al. Corrosion and serration behaviors of TiZr0.5NbCr0.5V x Mo y high entropy alloys in aqueous environments [J]. Metals, 2014, 4: 597
doi: 10.3390/met4040597
19
Xia S Q, Yang X, Yang T F, et al. Irradiation resistance in Al x CoCrFeNi high entropy alloys [J]. JOM, 2015, 67: 2340
doi: 10.1007/s11837-015-1568-4
20
Shi Y Z, Yang B, Xie X, et al. Corrosion of Al x CoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior [J]. Corros. Sci., 2017, 119: 33
doi: 10.1016/j.corsci.2017.02.019
21
Luo H, Sohn S S, Lu W J, et al. A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion [J]. Nat. Commun., 2020, 11: 3081
doi: 10.1038/s41467-020-16791-8
pmid: 32555177
22
Pu Z, Chen Y, Dai L H. Strong resistance to hydrogen embrittlement of high-entropy alloy [J]. Mater. Sci. Eng., 2018, A736: 156
23
Yao Y G, Huang Z H, Xie P F, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles [J]. Science, 2018, 359: 1489
doi: 10.1126/science.aan5412
pmid: 29599236
24
Cheng Z, Wang S Z, Wu G L, et al. Tribological properties of high-entropy alloys: A review [J]. Int. J. Miner. Metall. Mater., 2022, 29: 389
doi: 10.1007/s12613-021-2373-4
25
Luan H W, Shao Y, Li J F, et al. Phase stabilities of high entropy alloys [J]. Scr. Mater., 2020, 179: 40
doi: 10.1016/j.scriptamat.2019.12.041
26
Song H Q, Tian F Y, Hu Q M, et al. Local lattice distortion in high-entropy alloys [J]. Phys. Rev. Mater., 2017, 1: 023404
27
Lee C, Song G, Gao M C, et al. Lattice distortion in a strong and ductile refractory high-entropy alloy [J]. Acta Mater., 2018, 160: 158
doi: 10.1016/j.actamat.2018.08.053
28
Tong Y, Jin K, Bei H, et al. Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction [J]. Mater. Des., 2018, 155: 1
doi: 10.1016/j.matdes.2018.05.056
29
Sohn S S, Da Silva A K, Ikeda Y, et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion [J]. Adv. Mater., 2019, 31: 1807142
doi: 10.1002/adma.v31.8
30
Lee C, Chou Y, Kim G, et al. Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy [J]. Adv. Mater., 2020, 32: 2004029
doi: 10.1002/adma.v32.49
31
Li J, Chen Y, He Q F, et al. Heterogeneous lattice strain strengthening in severely distorted crystalline solids [J]. Proc. Natl. Acad. Sci., 2022, 119: e2200607119
doi: 10.1073/pnas.2200607119
32
Tsai M H, Wang C W, Lai C H, et al. Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization [J]. Appl. Phys. Lett., 2008, 92: 052109
33
Hsiao Y T, Tung C H, Lin S J, et al. Thermodynamic route for self-forming 1.5 nm V-Nb-Mo-Ta-W high-entropy alloy barrier layer: Roles of enthalpy and mixing entropy [J]. Acta Mater., 2020, 199: 107
doi: 10.1016/j.actamat.2020.08.029
34
Yao M J, Pradeep K G, Tasan C C, et al. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility [J]. Scr. Mater., 2014, 72-73: 5
doi: 10.1016/j.scriptamat.2013.09.030
35
Tang Z, Gao M C, Diao H Y, et al. Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems [J]. JOM, 2013, 65: 1848
doi: 10.1007/s11837-013-0776-z
Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
doi: 10.1038/s41586-018-0685-y
38
Lin Q Y, Liu J P, An X H, et al. Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy [J]. Mater. Res. Lett., 2018, 6: 236
doi: 10.1080/21663831.2018.1434250
39
Pu Z, Xie Z C, Sarmah R, et al. Spatio-temporal dynamics of jerky flow in high-entropy alloy at extremely low temperature [J]. Philos. Mag., 2021, 101: 154
doi: 10.1080/14786435.2020.1822557
40
Nutor R K, Xu T D, Wang X L, et al. Liquid helium temperature deformation and local atomic structure of CoNiV medium entropy alloy [J]. Mater. Today Commun., 2022, 30: 103141
41
Wang S B, Wu M X, Shu D, et al. Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at cryogenic temperatures [J]. Acta Mater., 2020, 201: 517
doi: 10.1016/j.actamat.2020.10.044
42
Kim D G, Jo Y H, Yang J H, et al. Ultrastrong duplex high-entropy alloy with 2 GPa cryogenic strength enabled by an accelerated martensitic transformation [J]. Scr. Mater., 2019, 171: 67
doi: 10.1016/j.scriptamat.2019.06.026
43
Zhang Y W, Stocks G M, Jin K, et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys [J]. Nat. Commun., 2015, 6: 8736
doi: 10.1038/ncomms9736
pmid: 26507943
44
Parkin C, Moorehead M, Elbakhshwan M, et al. In situ microstructural evolution in face-centered and body-centered cubic complex concentrated solid-solution alloys under heavy ion irradiation [J]. Acta Mater., 2020, 198: 85
doi: 10.1016/j.actamat.2020.07.066
45
Gali A, George E P. Tensile properties of high- and medium-entropy alloys [J]. Intermetallics, 2013, 39: 74
doi: 10.1016/j.intermet.2013.03.018
46
Lyu Z Y, Fan X S, Lee C, et al. Fundamental understanding of mechanical behavior of high-entropy alloys at low temperatures: A review [J]. J. Mater. Res., 2018, 33: 2998
doi: 10.1557/jmr.2018.273
47
Moon J, Qi Y S, Tabachnikova E, et al. Microstructure and mechanical properties of high-entropy alloy Co20Cr26Fe20Mn20Ni14 processed by high-pressure torsion at 77 K and 300 K [J]. Sci. Rep., 2018, 8: 11074
doi: 10.1038/s41598-018-29446-y
48
Nutor R K, Cao Q P, Wei R, et al. A dual-phase alloy with ultrahigh strength-ductility synergy over a wide temperature range [J]. Sci. Adv., 2021, 7: eabi4404
doi: 10.1126/sciadv.abi4404
49
Liu J P, Chen J X, Liu T W, et al. Superior strength-ductility CoCrNi medium-entropy alloy wire [J]. Scr. Mater., 2020, 181: 19
doi: 10.1016/j.scriptamat.2020.02.002
50
Tian Y Z, Peng S Y, Chen S F, et al. Temperature-dependent tensile properties of ultrafine-grained C-doped CoCrFeMnNi high-entropy alloy [J]. Rare Met., 2022, 41: 2877
doi: 10.1007/s12598-022-01972-9
51
Shim S H, Moon J, Pouraliakbar H, et al. Toward excellent tensile properties of nitrogen-doped CoCrFeMnNi high-entropy alloy at room and cryogenic temperatures [J]. J. Alloys Compd., 2022, 897: 163217
doi: 10.1016/j.jallcom.2021.163217
52
Wang Y T, Li J B, Yang K H, et al. Research progress and prospects of interstitial atoms and particle enhanced CoCrFeMnNi high entropy alloy [J]. Trans. Mater. Heat Treat., 2022, 43: 1
Li D Y, Zhang Y. The ultrahigh charpy impact toughness of forged Al x CoCrFeNi high entropy alloys at room and cryogenic temperatures [J]. Intermetallics, 2016, 70: 24
doi: 10.1016/j.intermet.2015.11.002
54
Zhang Y, Peng W J. Microstructural control and properties optimization of high-entropy alloys [J]. Procedia Eng., 2012, 27: 1169
doi: 10.1016/j.proeng.2011.12.568
55
Stepanov N, Tikhonovsky M, Yurchenko N, et al. Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy [J]. Intermetallics, 2015, 59: 8
doi: 10.1016/j.intermet.2014.12.004
56
Tang Q H, Huang Y, Huang Y Y, et al. Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing [J]. Mater. Lett., 2015, 151: 126
doi: 10.1016/j.matlet.2015.03.066
57
Yu P F, Cheng H, Zhang L J, et al. Effects of high pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy [J]. Mater. Sci. Eng., 2016, A655: 283
58
Moon J, Qi Y S, Tabachnikova E, et al. Deformation-induced phase transformation of Co20Cr26Fe20Mn20Ni14 high-entropy alloy during high-pressure torsion at 77 K [J]. Mater. Lett., 2017, 202: 86
doi: 10.1016/j.matlet.2017.05.065
59
Sathiyamoorthi P, Moon J, Bae J W, et al. Superior cryogenic tensile properties of ultrafine-grained CoCrNi medium-entropy alloy produced by high-pressure torsion and annealing [J]. Scr. Mater., 2019, 163: 152
doi: 10.1016/j.scriptamat.2019.01.016
60
Deng Y, Tasan C C, Pradeep K G, et al. Design of a twinning-induced plasticity high entropy alloy [J]. Acta Mater., 2015, 94: 124
doi: 10.1016/j.actamat.2015.04.014
61
Jo Y H, Jung S, Choi W M, et al. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy [J]. Nat. Commun., 2017, 8: 15719
doi: 10.1038/ncomms15719
pmid: 28604656
62
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
63
Li D Y, Li Z M, Xie L, et al. Cryogenic mechanical behavior of a TRIP-assisted dual-phase high-entropy alloy [J]. Nano Res. 2022, 15: 4859
doi: 10.1007/s12274-021-3719-y
64
He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
doi: 10.1016/j.actamat.2015.08.076
65
Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815
pmid: 30467166
66
Xu X D, Liu P, Tang Z, et al. Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi [J]. Acta Mater. 2018, 144: 107
doi: 10.1016/j.actamat.2017.10.050
67
Tong Y, Chen D, Han B, et al. Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures [J]. Acta Mater., 2019, 165: 228
doi: 10.1016/j.actamat.2018.11.049
68
Liu H C, Kuo C M, Shen P K, et al. Disordering of L12 phase in high-entropy alloy deformed at cryogenic temperature [J]. Adv. Eng. Mater., 2021, 23: 2100564
doi: 10.1002/adem.v23.12
69
Jo Y H, Yang J H, Doh K Y, et al. Analysis of damage-tolerance of TRIP-assisted V10Cr10Fe45Co30Ni5 high-entropy alloy at room and cryogenic temperatures [J]. J. Alloys Compd., 2020, 844: 156090
doi: 10.1016/j.jallcom.2020.156090
70
Zhang K S, Zhang X H, Zhang E G, et al. Strengthening of ferrous medium entropy alloys by promoting phase transformation [J]. Intermetallics, 2021, 136: 107265
doi: 10.1016/j.intermet.2021.107265
71
Wei C B, Lu Y P, Du X H, et al. Remarkable strength of a non-equiatomic Co29Cr29Fe29Ni12.5W0.5 high-entropy alloy at cryogenic temperatures [J]. Mater. Sci. Eng., 2021, A818: 141446
72
Liu D, Jin X, Guo N, et al. Non-equiatomic FeMnCrNiAl high-entropy alloys with heterogeneous structures for strength and ductility combination [J]. Mater. Sci. Eng., 2021, A818: 141386
73
Dong Y, Duan S G, Huang X, et al. Excellent strength-ductility synergy in as-cast Al0.6CoCrFeNi2Mo0.08V0.04 high-entropy alloy at room and cryogenic temperatures [J]. Mater. Lett., 2021, 294: 129778
doi: 10.1016/j.matlet.2021.129778
74
Fiocchi J, Mostaed A, Coduri M, et al. Enhanced cryogenic and ambient temperature mechanical properties of CoCuFeMnNi high entropy alloy through controlled heat treatment [J]. J. Alloys Compd., 2022, 910: 164810
doi: 10.1016/j.jallcom.2022.164810
75
Pei B, Fan J P, Wang Z, et al. Excellent combination of strength and ductility in CoNiCr-based MP159 alloys at cryogenic temperature [J]. J. Alloys Compd., 2022, 907: 164144
doi: 10.1016/j.jallcom.2022.164144
76
Giwa A M, Aitken Z H, Liaw P K, et al. Effect of temperature on small-scale deformation of individual face-centered-cubic and body-centered-cubic phases of an Al0.7CoCrFeNi high-entropy alloy [J]. Mater. Des., 2020, 191: 108611
doi: 10.1016/j.matdes.2020.108611
77
Sun S J, Tian Y Z, Lin H R, et al. Temperature dependence of the Hall-Petch relationship in CoCrFeMnNi high-entropy alloy [J]. J. Alloys Compd., 2019, 806: 992
doi: 10.1016/j.jallcom.2019.07.357
78
Ding Q Q, Fu X Q, Chen D K, et al. Real-time nanoscale observation of deformation mechanisms in CrCoNi-based medium- to high-entropy alloys at cryogenic temperatures [J]. Mater. Today, 2019, 25: 21
doi: 10.1016/j.mattod.2019.03.001
79
Jang M J, Kwak H, Lee Y W, et al. Plastic deformation behavior of 40Fe-25Ni-15Cr-10Co-10V high-entropy alloy for cryogenic applications [J]. Met. Mater. Int., 2019, 25: 277
doi: 10.1007/s12540-018-0184-6
80
Górecki K, Bała P, Bednarczyk W, et al. Cryogenic behaviour of the Al5Ti5Co35Ni35Fe20 multi-principal component alloy [J]. Mater. Sci. Eng., 2019, A745: 346
81
Sun S J, Tian Y Z, Lin H R, et al. Achieving high ductility in the 1.7 GPa grade CoCrFeMnNi high-entropy alloy at 77 K [J]. Mater. Sci. Eng., 2019, A740-741: 336
82
Sun S J, Tian Y Z, An X H, et al. Ultrahigh cryogenic strength and exceptional ductility in ultrafine-grained CoCrFeMnNi high-entropy alloy with fully recrystallized structure [J]. Mater. Today Nano., 2018, 4: 46
83
Bönisch M, Wu Y, Sehitoglu H. Twinning-induced strain hardening in dual-phase FeCoCrNiAl0.5 at room and cryogenic temperature [J]. Sci. Rep., 2018, 8: 10663
doi: 10.1038/s41598-018-28784-1
pmid: 30006547
84
Jo Y H, Choi W M, Sohn S S, et al. Role of brittle sigma phase in cryogenic-temperature-strength improvement of non-equi-atomic Fe-rich VCrMnFeCoNi high entropy alloys [J]. Mater. Sci. Eng., 2018, A724: 403
85
Lu Z P, Lei Z F, Huang H L, et al. Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
doi: 10.11900/0412.1961.2018.00372
Abuzaid W, Egilmez M, Chumlyakov Y I. TWIP-TRIP effect in single crystalline VFeCoCrNi multi-principle element alloy [J]. Scr. Mater., 2021, 194: 113637
doi: 10.1016/j.scriptamat.2020.113637
87
Wu P F, Gan K F, Yan D S, et al. The temperature dependence of deformation behaviors in high-entropy alloys: A review [J]. Metals, 2021, 11: 2005
doi: 10.3390/met11122005
88
Rizi M S, Minouei H, Lee B J, et al. Effects of carbon and molybdenum on the nanostructural evolution and strength/ductility trade-off in Fe40Mn40Co10Cr10 high-entropy alloys [J]. J. Alloys Compd., 2022, 911: 165108
doi: 10.1016/j.jallcom.2022.165108
89
Park H D, Won J W, Moon J, et al. Fe55Co17.5Ni10Cr12.5Mo5 high-entropy alloy with outstanding cryogenic mechanical properties driven by deformation-induced phase transformation behavior [J]. Met. Mater. Int., 2023, 29: 95
doi: 10.1007/s12540-022-01215-7
90
Jo Y H, Choi W M, Kim D G, et al. FCC to BCC transformation-induced plasticity based on thermodynamic phase stability in novel V10Cr10Fe45Co x Ni35-x medium-entropy alloys [J]. Sci. Rep., 2019, 9: 2948
doi: 10.1038/s41598-019-39570-y
pmid: 30814569
91
Kwon H, Moon J, Bae J W, et al. Precipitation-driven metastability engineering of carbon-doped CoCrFeNiMo medium-entropy alloys at cryogenic temperature [J]. Scr. Mater., 2020, 188: 140
doi: 10.1016/j.scriptamat.2020.07.023
92
Wang Z W, Lu W J, Raabe D, et al. On the mechanism of extraordinary strain hardening in an interstitial high-entropy alloy under cryogenic conditions [J]. J. Alloys Compd., 2019, 781: 734
doi: 10.1016/j.jallcom.2018.12.061
93
Seol J B, Bae J W, Kim J G, et al. Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications [J]. Acta Mater., 2020, 194: 366
doi: 10.1016/j.actamat.2020.04.052
94
He Z F, Jia N, Wang H W, et al. Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature [J]. J. Mater. Sci. Technol., 2021, 86: 158
doi: 10.1016/j.jmst.2020.12.079
95
Bae J W, Seol J B, Moon J, et al. Exceptional phase-transformation strengthening of ferrous medium-entropy alloys at cryogenic temperatures [J]. Acta Mater., 2018, 161: 388
doi: 10.1016/j.actamat.2018.09.057
96
Jo Y H, Choi W M, Kim D G, et al. Utilization of brittle σ phase for strengthening and strain hardening in ductile VCrFeNi high-entropy alloy [J]. Mater. Sci. Eng., 2019, A743: 665
97
Du X H, Huo X F, Chang H T, et al. Superior strength-ductility combination of a Co-rich CoCrNiAlTi high-entropy alloy at room and cryogenic temperatures [J]. Mater. Res. Express, 2020, 7: 034001
98
Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200
pmid: 25160691
99
Lu Y P, Gao X Z, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range [J]. Acta Mater., 2017, 124: 143
doi: 10.1016/j.actamat.2016.11.016
100
Li Y, Shi P J, Wang M Y, et al. Unveiling microstructural origins of the balanced strength-ductility combination in eutectic high-entropy alloys at cryogenic temperatures [J]. Mater. Res. Lett., 2022, 10: 602
doi: 10.1080/21663831.2022.2078169
101
Huo W Y, Fang F, Zhou H, et al. Remarkable strength of CoCrFeNi high-entropy alloy wires at cryogenic and elevated temperatures [J]. Scr. Mater., 2017, 141: 125
doi: 10.1016/j.scriptamat.2017.08.006
102
Chen J X, Li T, Chen Y, et al. Ultra-strong heavy-drawn eutectic high entropy alloy wire [J]. Acta Mater., 2023, 243: 118515
doi: 10.1016/j.actamat.2022.118515
103
Fan L, Yang T, Zhao Y L, et al. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures [J]. Nat. Commun., 2020, 11: 6240
doi: 10.1038/s41467-020-20109-z
pmid: 33288762
104
Du X H, Li W P, Chang H T, et al. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy [J]. Nat. Commun., 2020, 11: 2390
doi: 10.1038/s41467-020-16085-z
pmid: 32404913
105
Wang S D, Wang J H, Yang Y, et al. Ultrastrong interstitially-strengthened chemically complex martensite via tuning phase stability [J]. Scr. Mater., 2023, 226: 115257
doi: 10.1016/j.scriptamat.2022.115257
106
Chung H, Choi W S, Jun H, et al. Doubled strength and ductility via maraging effect and dynamic precipitate transformation in ultrastrong medium-entropy alloy [J]. Nat. Commun., 2023, 14: 145
doi: 10.1038/s41467-023-35863-z
pmid: 36627295
107
Liu X F, Tian Z L, Zhang X F, et al. "Self-sharpening" tungsten high-entropy alloy [J]. Acta Mater., 2020, 186: 257
doi: 10.1016/j.actamat.2020.01.005
108
Li Z, Zhao S, Diao H, et al. High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure [J]. Sci. Rep., 2017, 7: 42742
doi: 10.1038/srep42742
pmid: 28210000
109
Jiao Z M, Ma S G, Chu M Y, et al. Superior mechanical properties of AlCoCrFeNiTi x high-entropy alloys upon dynamic loading [J]. J. Mater. Eng. Perform., 2016, 25: 451
doi: 10.1007/s11665-015-1869-3
110
Tang Y, Wang R X, Xiao B, et al. A review on the dynamic-mechanical behaviors of high-entropy alloys [J]. Prog. Mater. Sci., 2023, 135: 101090
doi: 10.1016/j.pmatsci.2023.101090
111
He J Y, Wang Q, Zhang H S, et al. Dynamic deformation behavior of a face-centered cubic FeCoNiCrMn high-entropy alloy [J]. Sci. Bull., 2018, 63: 362
doi: 10.1016/j.scib.2018.01.022
pmid: 36658873
112
Li Z Z, Zhao S T, Alotaibi S M, et al. Adiabatic shear localization in the CrMnFeCoNi high-entropy alloy [J]. Acta Mater., 2018, 151: 424
doi: 10.1016/j.actamat.2018.03.040
113
Wang L, Qiao J W, Ma S G, et al. Mechanical response and deformation behavior of Al0.6CoCrFeNi high-entropy alloys upon dynamic loading [J]. Mater. Sci. Eng., 2018, A727: 208
114
Qiao Y, Chen Y, Cao F H, et al. Dynamic behavior of CrMnFeCoNi high-entropy alloy in impact tension [J]. Int. J. Impact Eng., 2021, 158: 104008
doi: 10.1016/j.ijimpeng.2021.104008
115
Zhao S T, Li Z Z, Zhu C Y, et al. Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy [J]. Sci. Adv., 2021, 7: eabb3108
doi: 10.1126/sciadv.abb3108
116
Wang R X, Tang Y, Li S, et al. Research progress on deformation mechanisms under dynamic loading of high-entropy alloys [J]. Mater. Rep., 2021, 35: 17001
Qin S, Yang M X, Liu Y K, et al. Superior dynamic shear properties and deformation mechanisms in a high entropy alloy with dual heterogeneous structures [J]. J. Mater. Res. Technol., 2022, 19: 3287
doi: 10.1016/j.jmrt.2022.06.074
118
Huang A M, Fensin S J, Meyers M A. Strain-rate effects and dynamic behavior of high entropy alloys [J]. J. Mater. Res. Technol., 2023, 22: 307
doi: 10.1016/j.jmrt.2022.11.057
119
Hu M L, Song W D, Duan D B, et al. Dynamic behavior and microstructure characterization of TaNbHfZrTi high-entropy alloy at a wide range of strain rates and temperatures [J]. Int. J. Mech. Sci., 2020, 182: 105738
doi: 10.1016/j.ijmecsci.2020.105738
120
Qiao Y, Cao F H, Chen Y, et al. Impact tension behavior of heavy-drawn nanocrystalline CoCrNi medium entropy alloy wire [J]. Mater. Sci. Eng., 2022, A856: 144041