Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (2): 137-140    DOI: 10.3724/SP.J.1037.2014.00016
Current Issue | Archive | Adv Search |
SIZE EFFECTS ON THE STRENGTH OF METALS
HUANG Xiaoxu()
Danish-Chinese Center for Nanometals, Department of Wind Energy, Technical University of Denmark, DK-4000 Roskilde, Denmark
Cite this article: 

HUANG Xiaoxu. SIZE EFFECTS ON THE STRENGTH OF METALS. Acta Metall Sin, 2014, 50(2): 137-140.

Download:  HTML  PDF(1370KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The grain size effect and the specimen size effect on the strength of metals are briefly reviewed with respect to their history and current status of research. It is revealed that the fundamental strengthening mechanisms responsible for these two types of size effect are to increase the resistance to dislocation motion and to dislocation generation, respectively. It is shown that both strengthening mechanisms take place in some nanostructured metals, which leads to a suggestion to use these two mechanisms for optimizing the strength and ductility of nanostructured metals. This suggestion is verified by some results obtained in nanostructured pure aluminum.

Key words:  strength of metal      grain size effect      specimen size effect      nanostructured metal      strengthening mechanism     
Received:  08 January 2014     
ZTFLH:  TG111.2  
  TG113.25  
Fund: Supported by Danish National Research Foundation (No.DNRF86-5) and National Natural Science Foundation of China ( No.51261130091)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2014.00016     OR     https://www.ams.org.cn/EN/Y2014/V50/I2/137

Fig.1  

高纯Al (99.99%)的屈服强度σ0.2 与平均晶粒尺寸dR 的关系曲线[10]

Fig.2  

纳米结构纯Al (99.2%)的组织形貌和位错组态[21,22]

Fig.3  

纳米结构纯Al的工程应力-应变曲线[23]

[1] Hall E O. Proc Phys Soc, 1951; 64B: 747
[2] Petch N J. J Iron Steel Inst, 1953; 174: 25
[3] Armstrong R W, Codd I, Douthwaite R M, Petch N J. Philos Mag, 1962; 7: 45
[4] Takaki S. Mater Sci Forum, 2010; 654-656: 11
[5] Eshelby J D, Frank F C, Nabarro F R N. Philos Mag, 1951; 42: 351
[6] Li J C M. Trans TMS-AIME, 1963; 227: 239
[7] Conrad H, Jung K. Mater Sci Eng, 2005; A391: 272
[8] Dunstan D J, Bushby A J. Inter J Plast, 2014; 53: 56
[9] Schiøtz J, Jacobsen K W. Science, 2003; 301: 1357
[10] Kamikawa N, Huang X, Tsuji N, Hansen N. Acta Mater, 2009; 57: 4198
[11] Hansen N. Acta Metall, 1977; 25: 863
[12] Brenner S S. J Appl Phys, 1956; 27: 1484
[13] Brenner S S. J Appl Phys, 1957; 28: 1023
[14] Uchic M D, Shade P A, Dimiduk D M. Annu Rev Mater Res, 2009; 39: 361
[15] Sudharshan Phani P, Johanns K E, George E P, Pharr G M. Acta Mater, 2013; 61: 2489
[16] Johanns K E, Sedlmayr A, Sudharshan Phani P, Mönig R, Kraft O, George E P, Pharr G M. J Mater Res, 2012; 27: 508
[17] Dehm G. Prog Mater Sci, 2009; 54: 664
[18] Shan Z W, Mishra R K, Asif S A S, Warren O L, Minor A M. Nat Mater, 2008; 7: 115
[19] Sudharshan Phani P, Johanns K E, Duscher G, Gali A, George E P, Pharr G M. Acta Mater, 2011; 59: 2172
[20] Dunstan D J, Bushby A J. Int J Plast, 2013; 40: 152
[21] Huang X, Tsuji N, Hansn N. Science, 2006; 312: 249
[22] Huang X, Kamikawa N, Hansen N. Mater Sci Eng, 2008; A483-484 : 102
[23] Huang X, Kamikawa N, Hansen N. J Mater Sci, 2008; 43: 7397
[1] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[2] CHEN Jilin, FENG Guanghong, MA Honglei, YANG Dong, LIU Wei. Microstructure, Mechanical Properties, and Strengthening Mechanism of Cr-Mo Microalloy Cold Heading Steel[J]. 金属学报, 2022, 58(9): 1189-1198.
[3] ZHAO Yonghao, MAO Qingzhong. Toughening of Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1385-1398.
[4] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[5] WANG Hongwei, HE Zhufeng, JIA Nan. Microstructure and Mechanical Properties of a FeMnCoCr High-Entropy Alloy with Heterogeneous Structure[J]. 金属学报, 2021, 57(5): 632-640.
[6] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[7] WEN Bin, TIAN Yongjun. Mechanical Behaviors of Nanotwinned Metals and Nanotwinned Covalent Materials[J]. 金属学报, 2021, 57(11): 1380-1395.
[8] LUAN Xiaosheng, LIANG Zhiqiang, ZHAO Wenxiang, SHI Guihong, LI Hongwei, LIU Xinli, ZHU Guorong, WANG Xibin. Strengthening Mechanism of 45CrNiMoVA Steel by Pulse Magnetic Treatment[J]. 金属学报, 2021, 57(10): 1272-1280.
[9] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[10] XU Shuai, SUN Xinjun, LIANG Xiaokai, LIU Jun, YONG Qilong. Effect of Hot Rolling Deformation on Microstructure and Mechanical Properties of a High-Ti Wear-Resistant Steel[J]. 金属学报, 2020, 56(12): 1581-1591.
[11] QIN Jiayu, LI Xiaoqiang, JIN Peipeng, WANG Jinhui, ZHU Yunpeng. Microstructure and Mechanical Properties of Carbon Nanotubes (CNTs) Reinforced AZ91 Matrix Composite[J]. 金属学报, 2019, 55(12): 1537-1543.
[12] Yajun HUI, Hui PAN, Kun LIU, Wenyuan LI, Yang YU, Bin CHEN, Yang CUI. Strengthening Mechanism of 600 MPa Grade Nb-Ti Microalloyed High Formability Crossbeam Steel[J]. 金属学报, 2017, 53(8): 937-946.
[13] Kechang HAN,Yiqi LIU,Guoqiang LIN,Chuang DONG,Kaiping TAI,Xin JIANG. STUDY ON ATOMIC-SCALE STRENGTHENING MECHANISM OF TRANSITION-METAL NITRIDE MNx (M=Ti, Zr, Hf) FILMS WITHIN WIDE COMPOSITION RANGES[J]. 金属学报, 2016, 52(12): 1601-1609.
[14] Jun SUN, Jinyu ZHANG, Kai WU, Gang LIU. SIZE EFFECTS ON THE DEFORMATION AND DAMAGEOF Cu-BASED METALLIC NANOLAYEREDMICRO-PILLARS[J]. 金属学报, 2016, 52(10): 1249-1258.
[15] Yajun HUI,Hui PAN,Na ZHOU,Ruiheng LI,Wenyuan LI,Kun LIU. STUDY ON STRENGTHENING MECHANISM OF 650 MPa GRADE V-N MICROALLOYED AUTOMOBILE BEAM STEEL[J]. 金属学报, 2015, 51(12): 1481-1488.
No Suggested Reading articles found!