Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (2): 129-136    DOI: 10.3724/SP.J.1037.2013.00697
Current Issue | Archive | Adv Search |
PLASTIC DEFORMATION MECHANISMS IN NANOTWINNED METALS
LU Lei(), YOU Zesheng
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

LU Lei, YOU Zesheng. PLASTIC DEFORMATION MECHANISMS IN NANOTWINNED METALS. Acta Metall Sin, 2014, 50(2): 129-136.

Download:  HTML  PDF(2381KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A brief overview is provided about the plastic deformation mechanisms in nanotwinned metals. The unique two-dementional nanoscale twin lamellae lead to different dislocation slip systems activated during plastic deformation. It has been revealed that there are three distinctly different dislocation-mediated deformation mechanisms in nanotwinned metals, namely dislocation pile-up against and slip transfer across twin boundaries, Shockley partials gliding on twin boundaries leading to twin boundary migration, and threading dislocations slip confined by neighboring twin boundaries. It is further demonstrated that these three dislocation-mediated mechanisms are switchable upon changing in the loading direction with respect to twin boundaries.

Key words:  nano-twinned metal      deformation mechanism      dislocation slip      anisotropy      mechanical property     
Received:  05 November 2013     
ZTFLH:  TG146  
Fund: Supported by National Basic Research Program of China (No.2012CB932202) and National Natural Science Foundation of China (Nos.51071153 and 51371171)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00697     OR     https://www.ams.org.cn/EN/Y2014/V50/I2/129

Fig.1  

Thompson双四面体与纳米孪晶片层的相对位向关系

No. Category Slip plane Slip direction Miller index
1 Hard mode I DBC DB ( 1 1 - 1 ) [ 011 ]
2 DBC DC ( 1 1 - 1 ) [ 110 ]
3 DAC DA ( 1 - 11 ) [ 101 ]
4 DAC DC ( 1 - 11 ) [ 110 ]
5 DAB DA ( 11 1 - ) [ 101 ]
6 DAB DB ( 11 1 - ) [ 011 ]
7 Hard mode II DBC BC ( 1 1 - 1 ) [ 1 - 01 ]
8 DAC AC ( 1 - 11 ) [ 01 1 - ]
9 DAB AB ( 11 1 - ) [ 1 - 10 ]
10 Soft mode ABC AB ( 111 ) [ 1 - 10 ]
11 ABC AC ( 111 ) [ 01 1 - ]
12 ABC BC ( 111 ) [ 1 - 01 ]
  fcc纳米孪晶金属的滑移系类别
Fig.2  

[ 1 1 - 0 ] 织构纳米孪晶Cu的Schmid因子分析

Fig.3  

[111]织构纳米孪晶Cu的Schmid因子分析

Fig.4  

[111]织构纳米孪晶Cu相对于孪晶界不同方向压缩的Schmid因子分析

Fig.5  

柱状纳米孪晶Cu相对于孪晶界不同方向压缩变形的微观结构观察[45]

[1] Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Science, 2004; 304: 422
[2] Lu K, Lu L, Suresh S. Science, 2009; 324: 349
[3] Zhu T, Li J. Prog Mater Sci, 2010; 55: 710
[4] Shen Y F, Lu L, Lu Q H, Jin Z H, Lu K.Scr Mater, 2005; 52: 989
[5] Zhang X, Misra A, Wang H, Nastasi M, Embury J D, Mitchell T E, Hoagland R G, Hirth J P. Appl Phys Lett, 2004; 84: 1096
[6] Zhang X, Misra A, Wang H, Shen T D, Nastasi M, Mitchell T E, Hirth J P, Hoagland R G, Embury J D. Acta Mater, 2004; 52: 995
[7] Lu L, Schwaiger R, Shan Z W, Dao M, Lu K, Suresh S. Acta Mater, 2005; 53: 2169
[8] Chen X H, Lu L. Scr Mater, 2007; 57: 133
[9] Chen X H, Lu L, Lu K. Scr Mater, 2011; 64: 311
[10] Lu L, You Z S, Lu K. Scr Mater, 2012; 66: 837
[11] Shute C J, Myers B D, Xie S, Barbee Jr T W, Hodge A M, Weertman J R. Scr Mater, 2009; 60: 1073
[12] Shute C J, Myers B D, Xie S, Li S Y, Barbee Jr T W, Hodge A M, Weertman J R. Acta Mater, 2011; 59: 4569
[13] Hodge A M, Furnish T A, Shute C J, Liao Y, Huang X, Hong C S, Zhu Y T, Barbee Jr T W, Weertman J R.Scr Mater, 2012; 66: 872
[14] Pan Q S, Lu Q H, Lu L. Acta Mater, 2013; 61: 1383
[15] Singh A, Tang L, Dao M, Lu L, Suresh S. Acta Mater, 2011; 59: 2437
[16] Shen Y F, Lu L, Dao M, Suresh S. Scr Mater, 2006; 55: 319
[17] Lu L, Dao M, Zhu T, Li J. Scr Mater, 2009; 60: 1062
[18] Lu L, Zhu T, Shen Y, Dao M, Lu K, Suresh S. Acta Mater, 2009; 57: 5165
[19] Wu Z X, Zhang Y W, Srolovitz D J.Acta Mater, 2009; 57: 4508
[20] Wu Z X, Zhang Y W, Srolovitz D J. Acta Mater, 2011; 59: 6890
[21] Asaro R J, Kulkarni Y. Scr Mater, 2008; 58: 389
[22] Kulkarni Y, Asaro R J. Acta Mater, 2009; 57: 4835
[23] Dao M, Lu L, Shen Y F, Suresh S.Acta Mater, 2006; 54: 5421
[24] Jerusalem A, Dao M, Suresh S, Radovitzky R. Acta Mater, 2008; 56: 4647
[25] Asaro R J, Suresh S. Acta Mater, 2005; 53: 3369
[26] Zhang X, Wang H, Chen X H, Lu L, Lu K, Hoagland R G, Misra A. Appl Phys Lett, 2006; 88: 173116
[27] Hartley C S, Blachon D L A.J Appl Phys, 1978; 49: 4788
[28] Zhu T, Gao H. Scr Mater, 2012; 66: 843
[29] Hall E O. Proc Phys Soc London, 1951; 64B: 747
[30] Petch N J.J Iron Steel Int, 1953; 174: 25
[31] Jin Z H, Gumbsch P, Ma E, Albe K, Lu K, Hahn H, Gleiter H. Scr Mater, 2006; 54: 1163
[32] Jin Z H, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H, Hahn H. Acta Mater, 2008; 56: 1126
[33] Shabib I, Miller R E. Modell Simul Mater Sci Eng, 2009; 17: 055009
[34] Shabib I, Miller R E. Acta Mater, 2009; 57: 4364
[35] Lu L, Chen X, Huang X, Lu K. Science, 2009; 323: 607
[36] Li X, Wei Y, Lu L, Lu K, Gao H. Nature, 2010; 464: 877
[37] Merz M D, Dahlgren S D. J Appl Phys, 1975; 46: 3235
[38] Hodge A M, Wang Y M, Barbee Jr T W, Scr Mater, 2008; 59: 163
[39] Anderoglu O, Misra A, Wang J, Hoagland R G, Hirth J P, Zhang X. Int J Plast, 2010; 26: 875
[40] You Z S, Lu L, Lu K. Acta Mater, 2011; 59: 6927
[41] Misra A, Hirth J P, Hoagland R G. Acta Mater, 2005; 53: 4817
[42] Nix W. Metall Mater Trans, 1989; 20A: 2217
[43] Freund L B. J Appl Mech, 1987; 54: 553
[44] Matthews J W, Blakeslee A E. J Cryst Growth, 1975; 29: 273
[45] You Z, Li X, Gui L, Lu Q, Zhu T, Gao H, Lu L.Acta Mater, 2013; 61: 217
[46] Deng C, Sansoz F. Acta Mater, 2009; 57: 6090
[47] Deng C, Sansoz F. Nano Lett, 2009; 9: 1517
[48] Cao A J, Wei Y G, Mao S X. Appl Phys Lett, 2007; 90: 151909
[49] Hu Q, Li L, Ghoniem N M. Acta Mater, 2009; 57: 4866
[50] Li L, Ghoniem N M. Phys Rev, 2009; 79B: 075444
[51] Jang D, Li X, Gao H, Greer J R. Nat Nanotechnol, 2012; 7: 594
[52] Idrissi H, Wang B, Colla M S, Raskin J P, Schryvers D, Pardoen T. Adv Mater, 2011; 23: 2119
[53] Bufford D, Wang H, Zhang X.Acta Mater, 2011; 59: 93
[54] Lu K, Yan F K, Wang H T, Tao N R. Scr Mater, 2012; 66: 878
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[12] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[13] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[14] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[15] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
No Suggested Reading articles found!