Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (3): 371-378    DOI: 10.3724/SP.J.1037.2011.00615
论文 Current Issue | Archive | Adv Search |
EFFECTS OF Zn CONTENT ON MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF INDIRECT-EXTRUDED Mg-8Sn-Zn ALLOYS
CHENG Weili1, 2), QUE Zhongping, ZHANG Jinshan, XU Chunxiang, LIANG Wei, YOU Bongsun2)
1) School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024
2) Korea Institute of Materials Science, Changwon 641-831, Republic of Korea
Cite this article: 

CHENG Weili QUE Zhongping ZHANG Jinshan XU Chunxiang LIANG Wei YOU Bongsun. EFFECTS OF Zn CONTENT ON MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF INDIRECT-EXTRUDED Mg-8Sn-Zn ALLOYS. Acta Metall Sin, 2012, 48(3): 371-378.

Download:  PDF(5601KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The influence of Zn content on the microstructure evolution, texture and mechanical properties of indirect-extruded Mg-8wt.%Sn-Zn alloys have been investigated by OM, SEM, TEM, EBSD, XRD and a standard universal testing machine. The studied alloys were demonstrated to be extrudable at a relatively low temperature (250℃) and a high extrusion speed (2 m/min). During the extrusion process, most of the remained second phase particles present in the homogenized alloy are found to be aligned along the extrusion direction (ED) in the form of stringers after being broken into fragments during the extrusion process. While most of the coarse grains were changed into fine equiaxed grains with average sizes ranging from 10.5 μm to 7.4 μm. The volume fractions of the second phase particles increase with increasing Zn content while the grain size and texture strength decrease with increasing Zn content. These second phase particles are mainly composed of Mg2Sn, having a diameter of submicron and some nano-meter Zn-rich phases. Furthermore, the decrease in grain size can be explained by the Zener drag of fine particles. While, the textural weakening with Zn addition is associated with the decreased fraction of elongated grains retain strong fiber texture. The improvement in strength and reduction in yield asymmetry of the studied alloy were associated with finer grain size, higher fraction of second phase and weaker texture.
Key words: 
magnesium alloy
      extrusion      microstructure evolution,      texture      mechanical property     
Received:  28 September 2011     
ZTFLH: 

TG146.2

 
Fund: 

Supported by Fundamental R&D Program for Core Technology of Materials Funded by the Korean Ministry of Knowledge Economy

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00615     OR     https://www.ams.org.cn/EN/Y2012/V48/I3/371

[1] Mordike B L, Ebert T. Mater Sci Eng, 2003; A302: 37

[2] Kang D H, Park S S, Kim N J. Mater Sci Eng, 2005; A413–414: 555

[3] Park S S, You B S, Yoon D J. J Mater Pro Technol, 2009; 209: 5940

[4] Yang M, Pan F, Cheng L, Shen J. Mater Sci Eng, 2009; A512: 132

[5] Bettles C J, Gibson M A. JOM, 2005; 57: 46

[6] Mendis C L, Bettles C J, Gibson M A, Hutchinson C R. Mater Sci Eng, 2006; A435–436: 163

[7] Sasaki T T, Oh–ishi K, Ohkubo T, Hono K. Scr Mater, 2006; 55: 251

[8] Liu H M, Chen Y G, Tang Y B, Wei S H, Niu G. J Alloy Compd, 2007; 440: 122

[9] Harosh S, Miller L, Levi G, Bamberger M. J Mater Sci, 2007; 42: 9983

[10] Sasaki T T, Yamamoto K, Honma T, Kamado S, Hono K. Scr Mater, 2008; 59: 1111

[11] Park S S, Tang W N, You B S. Mater Lett, 2010; 64: 31

[12] Cheng W L, Park S S, You B S, Koo B H. Mater Sci Eng, 2010; A527: 4650

[13] Ball E A, Prangnell B. Scr Mater, 1994; 31: 111

[14] Humphreys F J. Acta Metall Mater, 1977; 25: 1323

[15] Robson J D, Henry D T, Davis B. Acta Mater, 2009; 57: 2739

[16] Mendis C L, Oh–ishi K, Kawamura Y, Honma T, Kamado S, Hono K. Acta Mater, 2009; 57: 749

[17] Shahzad M, Wagner L. Mater Sci Eng, 2009; A506: 141

[18] Cheng W L, Kim H S, You B S, Koo B H, Park S S. Mater Lett, 2011; 65: 1525

[19] Mackenzie L W F, Pekguleryuz M. Mater Sci Eng, 2008; A480: 189

[20] Stanford N, Barnett M R. Mater Sci Eng, 2008; A496: 399

[21] Yuan W, Panigrahi S K, Su J–Q, Mishra R S. Scr Mater, 2011; 65: 994

[22] Kang D H, Kim D W, Kim S B, Kim H K. Scr Mater, 2009; 61: 768

[23] Lim H K, Kim D H, Lee J Y, Kim W T, Kim D H. J Alloy Compd, 2009; 468: 308

[24] Wang Y N, Huang J C. Acta Mater, 2007; 55: 897

[25] Lim H K, Sohn S W, Lee J Y, Kim W T, Kim D H. J Alloys Compd, 2008; 454: 515

[26] Lee J Y, Lim H K, Kim D H, Won K T, Kim D H. Mater Sci Eng, 2007; A449–451: 987

[27] Koike J, Kobayashi T, Mukai T, Watanabe H, Suzuki M, Maruyama K, Higashi K. Acta Mater, 2003; 51: 2055

[28] Koike J. Metall Mater Trans, 2005; 36A: 1689

[29] Barnett M R. Scr Mater, 2008; 59: 696

[30] Jain J, Poole W J, Sinclair C W, Gharghouri M A. Scr Mater, 2010; 62: 301

[31] Stanford N, Barnett, M R. Mater Sci Eng, 2009; A516: 226
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[13] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
No Suggested Reading articles found!