Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (6): 787-796    DOI: 10.11900/0412.1961.2021.00375
Research paper Current Issue | Archive | Adv Search |
Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy
WANG Fa, JIANG He(), DONG Jianxin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy. Acta Metall Sin, 2023, 59(6): 787-796.

Download:  HTML  PDF(4352KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Designing high-performance aeroengine is important for development in the aviation industry. One of the key components is turbine disk material that can operate at 800oC. Among various methods for strengthening alloys, increasing the alloying degree is important, and GH4151 is one of the typical alloys with a high alloying degree. It comprises a large number of refractory metal elements and γ'-forming elements. OM, SEM, and JMatPro software were used to study the sensitivity of GH4151 microstructure evolution during heat treatment processes. The results show that a high alloying degree produces a complex microstructure with low-melting phases, such as Laves, γ/γ′ eutectic, and η phases. Due to the difference in incipient melting temperature of each precipitated phase, a three-stage heat treatment was developed to effectively eliminate the harmful phases in the alloy. The contents of segregation elements Nb and Ti in the as-cast GH4151 alloy have an obvious influence on the incipient melting temperature, whereas the effect of Mo content is relatively slight, and that of W content is not obvious. Decreasing Ti content while increasing Nb and Mo contents could reduce the incipient melting temperature of the η phase. Furthermore, increasing Ti and Mo contents while decreasing Nb content could reduce the incipient melting temperature of Laves phase. A large amount of γ'-forming elements contributes to the cooling rate sensitivity of γ′ phase evolution. 15oC/min is the critical value for the irregular growth of the γ' phase in the GH4151 alloy. When compared to alloys with low γ′-forming elements content, the γ′ phase in GH4151 alloy has a larger size when the cooling rate is > 15oC/min, and exhibits an irregular shape when the cooling rate is < 15oC/min. Thus, a high alloying degree contributes to the complex and sensitive microstructure evolution behavior of GH4151 alloy.

Key words:  GH4151 superalloy      heat treatment temperature      cooling rate      microstructure evolution     
Received:  03 September 2021     
ZTFLH:  TG156.1  
Fund: National Key Laboratory of Advanced High-Temperature Materials Open Fund and Fundamental Research Funds for the Central Universities(FRF-TP-19-038A2)
Corresponding Authors:  JIANG He, associate professor, Tel:13811910685, E-mail: jianghe@ustb.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00375     OR     https://www.ams.org.cn/EN/Y2023/V59/I6/787

Fig.1  Thermodynamic calculation results of element distribution behavior during solidification (a) and solidification process (b) of GH4151 superalloy
Fig.2  OM image of dendritic morphology (a), SEM image of γ′ phase at dendritic region (b), SEM images of precipitations at interdendritic region (c-f) in as-cast GH4151 superalloy
RegionCAlTiVCrCoNiNbMoWPhase
A01.201.620.4121.2322.2025.5412.2413.652.34Laves
B06.528.1103.6312.6261.026.361.150.51η
C09.807.2802.9712.7269.073.131.040.14γ/γ' eutectic
D56.250.0810.840.250.340.361.4828.880.840.48MC carbide
Table 1  Chemical compositions of precipitations at interdendritic region in Figs.2d-f of as-cast GH4151 superalloy
Fig.3  SEM images of GH4151 superalloy after heat treated at 1150oC (a, b), 1160oC (c, d), 1170oC (e), 1180oC (f), and 1190oC (g) for 10 min and then water quenching
Fig.4  SEM images of GH4151 superalloy after heat treatment at 1140oC, 10 h (a), 1140oC, 20 h (b), 1140oC, 20 h + 1170oC, 10 h (c), 1140oC, 20 h + 1170oC, 10 h + 1200oC, 20 h (d) based on the key temperature ranges (Insets show the locally enlarged views)
Fig.5  Mass fraction of γ' phase of different alloys (a) and the relationship between ΔT and γ' phase content (ΔT—difference between current temperature and γ' phase precipitation temperature) (b) based on calculation by using JMatPro software
Fig.6  SEM images of γ′ phase in GH4151 superalloy after heat treatment at 1140oC, 20 h + 1170oC, 10 h + 1200oC, 20 h and then water quenching (cooling rate v = 7888oC/min) (a), oil quenching (v = 2663oC/min) (b), air cooling (v = 220oC/min) (c), and furnace cooling (v = 15oC/min) (d) when the cooling rate ≥ furnace cooling
Fig.7  Low (a, c) and high (b, d) magnified SEM images of γ' phase in GH4151 superalloy after heat treatment at 1140oC, 20 h + 1170oC, 10 h + 1200oC, 20 h and then slow cooling (v = 10oC/min) (a, b), super slow cooling (v = 1oC/min) (c, d) when the cooling rate < furnace cooling (Oval regions show the γ' phases with irregular morphologies)
Fig.8  Relationship between the average size of γ' phase (d) and v
Fig.9  SEM images and irregularity coefficients (ξ) of different superalloys after cooling at 10oC/min from the super-solvus state
Fig.10  Influences of the contents of Ti (a), Nb (b), Mo (c), and W (d) on the incipient melting temperature of the low-melting phases
Fig.11  Schematic of relationship between cooling rate sensibility of γ' phase, degree of alloying, and cooling rate (dcr—critical diameter of γ' phase growing irregularly; dssc, dsc, and dfc are the diameters of γ' phase under super slow cooling, slow cooling, and fast cooling, respectively)
1 Xiang X M, Jiang H, Dong J X, et al. As-cast microstructure characteristic and homogenization of a newly developed hard-deformed Ni-based superalloy GH4975 [J]. Acta Metall. Sin., 2020, 56: 988
向雪梅, 江 河, 董建新 等. 难变形高温合金GH4975的铸态组织及均匀化 [J]. 金属学报, 2020, 56: 988
2 Lv S M. Research on hot deformation behavior and microstructure-properties control of GH4151 alloy [D]. Beijing: University of Science and Technology Beijing, 2021
吕少敏. GH4151合金高温变形行为及组织与性能控制研究 [D]. 北京: 北京科技大学, 2021
3 Zhang B J, Huang S, Zhang W Y, et al. Recent development of nickel-based disc alloys and corresponding cast-wrought processing techniques [J]. Acta Metall. Sin., 2019, 55: 1095
张北江, 黄 烁, 张文云 等. 变形高温合金盘材及其制备技术研究进展 [J]. 金属学报, 2019, 55: 1095
4 Lv S M, Jia C L, He X B, et al. Superplastic deformation and dynamic recrystallization of a novel disc superalloy GH4151 [J]. Materials, 2019, 12: 3667
doi: 10.3390/ma12223667
5 Zhao X B, Dang Y Y, Yin H F, et al. Thermodynamic calculations of precipitation of TCP phase and carbide phase of Ni-Fe base superalloys for ultra-supercritical power plants [J]. J. Mater. Eng., 2015, 43(5): 38
赵新宝, 党莹樱, 尹宏飞 等. 超超临界电站用镍铁基高温合金TCP相和碳化物相析出的热力学计算 [J]. 材料工程, 2015, 43(5):38
6 Li X X, Jia C L, Zhang Y, et al. Segregation and homogenization for a new nickel-based superalloy [J]. Vacuum, 2020, 177: 109379
doi: 10.1016/j.vacuum.2020.109379
7 Tan Y G, Liu F, Zhang A W, et al. Element segregation and solidification behavior of a Nb, Ti, Al Co-strengthened superalloy ЭК151 [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1298
doi: 10.1007/s40195-019-00894-3
8 Tan Y G. Investigation of solidification and high-temperature deformation behavior of Ni-base alloy ЭК151 [D]. Shenyang: University of Science and Technology of China (Institute of Metal Research, Chinese Academy of Sciences), 2019
谭远过. 新型镍基高温合金ЭК151凝固偏析及高温变形行为研究 [D]. 沈阳: 中国科学技术大学(中国科学院金属研究所), 2019
9 Bi Z N, Qu J L, Du J H, et al. Segregation behavior and investigation on homogenization for a new difficult-to-deform superalloy ЭК151 ingot [J]. J. Iron Steel Res., 2011, 23(): 263
毕中南, 曲敬龙, 杜金辉 等. 新型难变形高温合金ЭК151的偏析行为及均匀化工艺研究 [J]. 钢铁研究学报, 2011, 23(): 263
10 Winterton R H S. Newton's law of cooling [J]. Contemp. Phys., 1999, 40: 205
doi: 10.1080/001075199181549
11 Zhao G D. Effect of B and C on solidification segregation and hot ductility of U720Li alloy [D]. Shenyang: University of Science and Technology of China (Institute of Metal Research, Chinese Academy of Sciences), 2017
赵广迪. B和C对U720Li合金凝固偏析和热加工塑性的影响 [D]. 沈阳: 中国科学技术大学(中国科学院金属研究所), 2017
12 Qu J L, Yi C S, Chen J W, et al. Research progress of precipitated phase in GH4720Li superalloy [J]. J. Mater. Eng., 2020, 48(8): 73
曲敬龙, 易出山, 陈竞炜 等. GH4720Li合金中析出相的研究进展 [J]. 材料工程, 2020, 48(8): 73
13 Wang T, Wan Z P, Li Z, et al. Effect of heat treatment parameters on microstructure and hot workability of as-cast fine grain ingot of GH4720Li alloy [J]. Acta Metall. Sin., 2020, 56: 182
doi: 10.11900/0412.1961.2019.00205
王 涛, 万志鹏, 李 钊 等. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响 [J]. 金属学报, 2020, 56: 182
14 Liu S H, Si J Y, Chen L. Effect of thermal processing on critical grain growth of extruded FGH4096 alloy [J]. Chin. J. Nonferrous Met., 2020, 30: 1317
刘松浩, 司家勇, 陈 龙. 热加工工艺对挤压态FGH4096合金临界晶粒长大的影响 [J]. 中国有色金属学报, 2020, 30: 1317
15 Wang D, Liu Z, Wang J G, et al. Study on microstructure and properties of shaped ring parts for super alloy GH4738 [J]. Forg. Stamp. Technol., 2020, 45(5): 128
doi: 10.13330/j.issn.1000-3940.2020.05.022
王 丹, 刘 智, 王建国 等. GH4738高温合金异形环件组织与性能研究 [J]. 锻压技术, 2020, 45(5): 128
16 Yan X F, Dong J X, Shi Z X, et al. Solidification and segregation behavior of nickel-based superalloy GH4282 [J]. Rare Met. Mater. Eng., 2019, 48: 3183
颜晓峰, 董建新, 石照夏 等. 镍基高温合金GH4282的凝固和偏析行为 [J]. 稀有金属材料与工程, 2019, 48: 3183
17 Radis R, Schaffer M, Albu M, et al. Multimodal size distributions of γ′ precipitates during continuous cooling of UDIMET 720 Li [J]. Acta Mater., 2009, 57: 5739
doi: 10.1016/j.actamat.2009.08.002
18 Semiatin S, Zhang F, Tiley J, et al. A comparison of the precipitation behavior in PM γ-γ' nickel-base superalloys [J]. Mater. High. Temp., 2016, 33: 301
doi: 10.1080/09603409.2016.1165449
19 Xu C, Liu F, Huang L, et al. Dependence of creep performance and microstructure evolution on solution cooling rate in a polycrystalline superalloy [J]. Metals, 2018, 8: 4
doi: 10.3390/met8010004
20 Shin K Y, Kim J H, Terner M, et al. Effects of heat treatment on the microstructure evolution and the high-temperature tensile properties of Haynes 282 superalloy [J]. Mater. Sci. Eng., 2019, A751: 311
21 Masoumi F, Shahriari D, Jahazi M, et al. Kinetics and mechanisms of γ' reprecipitation in a Ni-based superalloy [J]. Sci. Rep., 2016, 6: 28650
doi: 10.1038/srep28650 pmid: 27338868
22 Kong D C, Dong C F, Ni X Q, et al. High-throughput fabrication of nickel-based alloys with different Nb contents via a dual-feed additive manufacturing system: Effect of Nb content on microstructural and mechanical properties [J]. J. Alloys Compd., 2019, 785: 826
doi: 10.1016/j.jallcom.2019.01.263
23 Lopez-Galilea I, Koßmann J, Kostka A, et al. The thermal stability of topologically close-packed phases in the single-crystal Ni-base superalloy ERBO/1 [J]. J. Mater. Sci., 2016, 51: 2653
doi: 10.1007/s10853-015-9579-7
24 Jiang H, Dong J X, Zhang M C, et al. Development of typical hard-to-deform nickel-base superalloy for turbine disk served above 800oC [J]. Aeron. Manuf. Technol., 2021, 64(1): 62
江 河, 董建新, 张麦仓 等. 800℃以上服役涡轮盘用难变形镍基高温合金研究进展 [J]. 航空制造技术, 2021, 64(1): 62
25 Yoo Y S. Morphological instability of spherical γ′ precipitates in a nickel base superalloy [J]. Scr. Mater., 2005, 53: 81
doi: 10.1016/j.scriptamat.2005.03.022
26 Henry M F, Yoo Y S, Yoon D Y, et al. The dendritic growth of γ′ precipitates and grain boundary serration in a model nickel-base superalloy [J]. Metall. Mater. Trans., 1993, 24A: 1733
27 Krutz N, Shen C, Karadge M, et al. An approach toward understanding unstable gamma prime precipitate evolution and its effect on properties [A]. Superalloys 2020: Proceedings of the 14th International Symposium on Superalloys [C]. Cham: Springer, 2020: 691
28 Zhang L, Li D, Qu X H, et al. Microstructure and tensile properties optimization of MIM418 superalloy by heat treatment [J]. J. Mater. Process. Technol., 2016, 227: 71
doi: 10.1016/j.jmatprotec.2015.08.001
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[4] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[5] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[6] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[7] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[8] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
[9] ZHU Yuping, Naicheng SHENG, XIE Jun, WANG Zhenjiang, XUN Shuling, YU Jinjiang, LI Jinguo, YANG Lin, HOU Guichen, ZHOU Yizhou, SUN Xiaofeng. Precipitation Behavior of W-Rich Phases in a High W-Containing Ni-Based Superalloys K416B[J]. 金属学报, 2021, 57(2): 215-223.
[10] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[11] LIU Chao, YAO Zhihao, GUO Jing, PENG Zichao, JIANG He, DONG Jianxin. Microstructure Evolution Behavior of Powder Superalloy FGH4720Li at Near Service Temperature[J]. 金属学报, 2021, 57(12): 1549-1558.
[12] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[13] WU Yun, LIU Yahui, KANG Maodong, GAO Haiyan, WANG Jun, SUN Baode. Microstructure Evolution of K4169 Alloy During Cyclic Loading[J]. 金属学报, 2020, 56(9): 1185-1194.
[14] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[15] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
No Suggested Reading articles found!