Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (3): 363-370    DOI: 10.3724/SP.J.1037.2011.00586
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE SIMULATION AND MECHANICAL PROPERTY PREDICTION OF MAGNESIUM ALLOY CASTING CONSIDERING SOLID SOLUTION AND AGING PROCESS
HAN Guomin1), HAN Zhiqiang1), HUO Liang1), DUAN Junpeng2), ZHU Xunming2), LIU Baicheng1, 3)
1) Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Department of Mechanical Engineering, Tsinghua University, Beijing 100084
2) Wanfeng Magnesium Co. Ltd., Weihai 264209
3) State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering, Tsinghua University, Beijing 100084
Cite this article: 

HAN Guomin HAN Zhiqiang HUO Liang DUAN Junpeng ZHU Xunming LIU Baicheng. MICROSTRUCTURE SIMULATION AND MECHANICAL PROPERTY PREDICTION OF MAGNESIUM ALLOY CASTING CONSIDERING SOLID SOLUTION AND AGING PROCESS. Acta Metall Sin, 2012, 48(3): 363-370.

Download:  PDF(2855KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A microstructure model was established for simulating the microstructure evolution during casting, solid solution and aging process of magnesium alloy casting based on the modified cellular automaton (CA) model. A mechanical property model taking into account the second phase precipitation and strengthening mechanism was developed for Mg-Al alloy. The established models were applied to simulate the microstructure evolution and predict the mechanical properties of a magnesium alloy automobile wheel casting. The results show that the predicted tensile strength is in good agreement with the average measurements, and the predicted yield strength is in good  agreement with the average measurements under as-cast and solid solution state, while there are some discrepancies between the predicted and measured yield strengths under aging state.
Key words:  magnesium alloy      microstructure evolution model      mechanical property model      automobile wheel casting     
Received:  17 September 2011     
Fund: 

Supported by National Natural Science Foundation of China (No.51175291), Tsinghua University Initiative Scientific Research Program and Ministry of Science and Technology of China (No.2010DFA72760)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00586     OR     https://www.ams.org.cn/EN/Y2012/V48/I3/363

[1] Fribourg G, Brechet Y, Deschamps A, Simar A. Acta Mater, 2011; 59: 3621

[2] Smoljan B, Iljki´c, D, Tomaˇsi´c N. J Achiev Mater Manuf Eng, 2010; 40: 155

[3] Panuˇskov´a M, Tillov´a E, Chalupov´a M. Strength Mater, 2008; 40: 98

[4] Liu Z Y, Xu Q Y, Liu B C. Acta Metall Sin, 2007; 43: 367

(刘志勇, 许庆彦, 柳百成. 金属学报, 2007; 43: 367)

[5] Huo L, Han Z Q, Liu B C. Acta Metall Sin, 2009; 45: 1414

(霍亮, 韩志强, 柳百成. 金属学报, 2009; 45: 1414)

[6] Huo L, Han Z Q, Liu B C. In: Agnew S, Neelameggham N R, Nyberg E A eds., Magnesium Technology 2010. Warrendale, PA: The Minerals, Metals and Materials Society, 2010: 601

[7] Yin H B, Felicelli S D. Modell Simul Mater Sci Eng, 2009; 17: 1

[8] Huo L. PhD Thesis, Tsinghua University, Beijing, 2011

(霍亮. 清华大学博士学位论文, 北京, 2011)[9] Maltais A, Dub´e D, FisetM, Laroche G, Turgeon S. Mater Charact, 2004; 52: 103

[10] Deschamps A, Brechet Y. Acta Mater, 1998; 47: 293

[11] Celotto S. Acta Mater, 2000; 48: 1775

[12] Gharghouri M A, Weatherly G C, Embury J D, Root J. Philos Mag, 1999; 79A: 1671

[13] Volmer M, Weber A. Phys Chem, 1926; 119: 277

[14] Becker R, Doring W. Ann Phys, 1935; 24: 719

[15] Zeldovich J B. Acta Physicochim, 1943; 18: 1

[16] Hillert M, Hoglund L, Agren J. Acta Mater, 2003; 51: 2089

[17] Lifshitz I, Slyozova V. J Phys Chem Solids, 1961; 19: 35

[18] Wagner C Z. Elektrochem, 1961; 65: 581

[19] Voorhees P W. Annu Rev Mater Sci, 1992; 22: 197

[20] Hutchinson C R, Nie J F, Gorsse S. Metall Mater Trans, 2005; 36A: 2093

[21] C´aceres C H, Davidson C J, Griffiths J R, Newton C L. Mater Sci Eng, 2002; A325: 344

[22] Akhtar A, Teghtsoonian E. Acta Metall, 1969; 17: 1339

[23] Akhtar A, Teghtsoonian E. Philos Mag, 1972; 25: 897

[24] Lukac P. Phys Status Solidi, 1992; 131A: 377

[25] Nussbaum G, Sainfort P, Regazzoni G, Gjestland H. Scr Metall, 1989; 23: 1079

[26] Shaw C, Jones H. Mater Sci Eng, 1997; A226: 856

[27] C´aceres C, Rovera D. J Light Met, 2001; 1: 151

[28] Hall E O. Proc Phys Soc Lond, 1951; 64B: 747

[29] Petch N J. J Iron Steel Inst, 1953; 174: 25

[30] Hauser F E, Landon P R, Dorn J E. Trans Am Inst Mining Metall Eng, 1956; 206: 589

[31] Brown L M, Ham P K. Strengthening Methods in Crystals. London: Elsevier, 1971: 10

[32] Miller W S, Humphreys F J. Scr Metall, 1991; 25: 33

[33] Armstrong R, Douthwaite R M, Codd I, Petch N J. Philos Mag, 1962; 7: 45

[34] Leroy G, Embury J D, Edward G, Ashby MF. Acta Metall, 1981; 29: 1509

[35] Brown L M, Stobbs W M. Philos Mag, 1971; 23: 1185

[36] Brown L M, Stobbs W M. Philos Mag, 1971; 23: 1201

[37] Brown L M, Clarke D R. Acta Metall, 1975; 23: 821

[38] Lemaitre J, Chaboche J L. Mechanics of Solid Materialsrm. Cambridge: Cambridge University Press, 1990: 167
[1] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[2] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[3] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[4] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[5] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[6] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[7] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[8] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[9] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[10] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[11] Rongchang ZENG, Lanyue CUI, Wei KE. Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion[J]. 金属学报, 2018, 54(9): 1215-1235.
[12] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
[13] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[14] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[15] Shoumei XIONG, Jinglian DU, Zhipeng GUO, Manhong YANG, Mengwu WU, Cheng BI, Yongyou CAO. Characterization and Modeling Study on Interfacial Heat Transfer Behavior and Solidified Microstructure of Die Cast Magnesium Alloys[J]. 金属学报, 2018, 54(2): 174-192.
No Suggested Reading articles found!